0
TECHNICAL PAPERS

Nanomechanical Properties of Polymers Determined From Nanoindentation Experiments

[+] Author and Article Information
C. Klapperich, K. Komvopoulos

Department of Mechanical Engineering University of California, Berkeley, CA 94720

L. Pruitt

Department of Mechanical Engineering and Department of Bioengineering, University of California, Berkeley, CA 94720

J. Tribol 123(3), 624-631 (Jul 25, 2000) (8 pages) doi:10.1115/1.1330736 History: Received February 09, 2000; Revised July 25, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chen,  C. S., Mrksich,  M., Huang,  S., Whitesides,  G. M., and Ingber,  D. E., 1997, “Geometric Control of Cell Life and Death,” Science, 276, pp. 1425–1428.
Strojny,  A., Xia,  X., Tsou,  A., and Gerberich,  W. W., 1998, “Techniques and Considerations for Nanoindentation Measurements of Polymer Thin Film Constitutive Properties,” J. Adhes. Sci. Technol., 12, pp. 1299–1321.
Xia,  X., Strojny,  A., Scriven,  L. E., Gerberich,  W. W., Tsou,  A., and Anderson,  C. C., 1998, “Constitutive Property Evaluation of Polymeric Coatings Using Nanomechanical Methods,” Fundamentals of Nanoindentation and Nanotribology, , , , , , , and ., eds., Mater. Res. Soc. Symp. Proc.,522, pp. 199–204.
Strojny,  A., and Gerberich,  W. W., 1998, “Experimental Analysis of Viscoelastic Behavior in Nanoindentation,” Fundamentals of Nanoindentation and Nanotribology, , , , , , , and ., eds., Mater. Res. Soc. Symp. Proc.,522, pp. 159–164.
Cheng,  L., Scriven,  L. E., and Gerberich,  W. W., 1998, “Viscoelastic Analysis of Micro- and Nanoindentation,” Fundamentals of Nanoindentation and Nanotribology, , , , , , , and ., eds., Mater. Res. Soc. Symp. Proc., 522, pp. 193–198.
Drechsler,  D., Karbach,  A., and Fuchs,  H., 1998, “Nanoindentation on Polycarbonate/Polymethyl Methacrylate Blends,” Appl. Phys. A: Mater. Sci. Process., 66, pp. S825–S829.
Briscoe,  B. J., Sebastian,  K. S., and Adams,  M. J., 1994, “The Effect of Indenter Geometry on the Elastic Response to Indentation,” J. Phys. D: Appl. Phys., 27, pp. 1156–1162.
Briscoe,  B. J., Sebastian,  K. S., and Sinha,  S. K., 1996, “Application of the Compliance Method to Microhardness Measurements of Organic Polymers,” Philos. Mag. A, 74, pp. 1159–1169.
Briscoe,  B. J., Fiori,  L., and Pelillo,  E., 1998, “Nano-Indentation of Polymeric Surfaces,” J. Phys. D: Appl. Phys., 31, pp. 2395–2405.
Lundkvist,  A., Lilleodden,  E., Siekhaus,  W., Kinney,  J., Pruitt,  L., and Balooch,  M., 1997, “Viscoelastic Properties of Healthy Human Artery Measured in Saline Solution by AFM-Based Indentation Technique,” Thin Films: Stresses and Mechanical Properties VI, , , , , , , and ., eds., Mater. Res. Soc. Symp. Proc., 436, pp. 353–358.
Ebenstein, D., Kuhn, L., Lundkvist, A., and Pruitt, L., 2000, “Differentiation of Mechanical Properties of Vascular Plaque Constituents Using Nanomechanical Methods,” 6th World Biomaterials Congress, Kamuela, HI, p. 531.
Lee,  F. Y., Rho,  J. Y., Harten,  R., Parsons,  J. R., and Behrens,  F. F., 1998, “Micromechanical Properties of Epiphyseal Trabecular Bone and Primary Spongiosa Around the Physis: An in situ Nanoindentation Study,” J. Pediat. Orthop.,18, pp. 582–585.
Zysset,  P. K., Guo,  X. E., Hoffler,  C. E., Moore,  K. E., and Goldstein,  S. A., 1999, “Elastic Modulus and Hardness of Cortical and Trabecular Bone Lamellae Measured by Nanoindentation in the Human Femur,” J. Biomech., 32, pp. 1005–1012.
Kinney,  J. H., Balooch,  M., Marshall,  S. J., Marshall,  G. W., and Weihs,  T. P., 1996, “Atomic Force Microscope Measurements of the Hardness and Elasticity of Peritubular and Intertubular Human Dentin,” J. Biomech. Eng., 118, pp. 133–135.
Balooch,  M., Wu-Magidi,  I. C., Balazs,  A., Lundkvist,  A. S., Marshall,  S. J., Marshall,  G. W., Siekhaus,  W. J., and Kinney,  J. H., 1998, “Viscoelastic Properties of Demineralized Human Dentin Measured in Water with Atomic Force Microscope (AFM)-Based Indentation,” J. Biomed. Mater. Res., 40, pp. 539–544.
Lekka,  M., Laidler,  P., Gil,  D., Lekki,  J., Stachura,  Z., and Hrynkiewicz,  A. Z., 1999, “Elasticity of Normal and Cancerous Human Bladder Cells Studied by Scanning Force Microscopy,” Eur. Biophys. J., 28, pp. 312–316.
Pruitt,  L., and Rondinone,  D., 1996, “The Effect of Specimen Thickness and Stress Ratio on the Fatigue Behavior of Polycarbonate,” Polym. Eng. Sci., 36, pp. 1300–1305.
Pruitt,  L., Hermann,  R., and Suresh,  S., 1992, “Fatigue Crack Growth in Polymers Subjected to Fully Compressive Cyclic Loads,” J. Mater. Sci., 27, pp. 1608–1616.
Li,  S., and Burstein,  A. H., 1994, “Current Concepts Review: Ultra-High Molecular Weight Polyethylene,” J. Bone Joint Surg., 76-A, pp. 1080–1090.
Rosen, S., 1993, Fundamental Principles of Polymeric Materials, Wiley, NY.
Boussinesq, J., 1885, Application des Potentiels à l’Etude de l’Equilibre et du Mouvement des Solides Elastiques, Paris, Gauthier-Villars.
Sneddon,  I. N., 1965, “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile,” Int. J. Eng. Sci., 3, pp. 47–57.
Pharr,  G. M., Oliver,  W. C., and Brotzen,  F. R., 1992, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation,” J. Mater. Res., 7, pp. 613–617.
Doerner,  M. F., and Nix,  W. D., 1986, “A Method for Interpreting the Data from Depth-Sensing Indentation Instruments,” J. Mater. Res., 1, pp. 601–609.
Oliver,  W. C., and Pharr,  G. M., 1992, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7, pp. 1564–1583.
Hay,  J. C., and Pharr,  G. M., 1998, “Experimental Investigations of the Sneddon Solution and an Improved Solution for the Analysis of Nanoindentation Data,” Fundamentals of Nanoindentation and Nanotribology, N. R. Moody, W. W. Gerberich, N. Burnham, and S. P. Baker, eds., Mater. Res. Soc. Symp. Proc., 522, pp. 39–44.
Hay,  J. L., O’Hern,  M. E., and Oliver,  W. C., 1998, “The Importance of Contact Radius for Substrate-Independent Property Measurement of Thin Films,” Fundamentals of Nanoindentation and Nanotribology, , , , , , , and ., eds., Mater. Res. Soc. Symp. Proc., 522, pp. 27–32.
Klapperich,  C., Komvopoulos,  K., and Pruitt,  L., 1999, “Tribological Properties and Microstructure Evolution of Ultra-High Molecular Weight Polyethylene,” ASME J. Tribol., 121, pp. 394–402.
Niederberger,  S., Gracias,  D. H., Komvopoulos,  K., and Somorjai,  G., 2000, “Transitions from Nanoscale to Microscale Dynamic Friction Mechanisms on Polyethylene and Silicon Surfaces,” J. Appl. Phys., 87, pp. 3143–3150.
Lo, Y., 1999, Nanotribology and Nanomechanics of Ultra Thin Films for Hard Disk Drives, Ph.D. thesis, University of California at Berkeley, Berkeley, CA.
Lin,  L., and Argon,  A. S., 1994, “Review: Structure and Plastic Deformation of Polyethylene,” J. Mater. Sci., 29, pp. 294–323.

Figures

Grahic Jump Location
Schematic diagram of the nanoindentation apparatus
Grahic Jump Location
Indentation curve of PC showing the partial unloadings performed for tip calibration
Grahic Jump Location
Schematic of the nanoindentation process with pertinent nomenclature: (a) indentation under maximum load and (b) typical nanoindentation curve for a polymer illustrating the unloading slope used to measure the material elastic stiffness.
Grahic Jump Location
Representative nanoindentation curves of different polymer materials for a maximum load of about 300 μN and a constant loading rate of 30 μN/s
Grahic Jump Location
Representative nanoindentation curves of (a) PMMA and (b) UHMWPE (GUR 4150) for different maximum contact depths and a constant loading rate of 30 μN/s
Grahic Jump Location
Elastic modulus versus indentation depth of (a) PMMA and (b) different polyethylene materials for a constant loading rate of 30 μN/s
Grahic Jump Location
Hardness versus indentation depth of (a) PMMA and (b) different polyethylene materials for a constant loading rate of 30 μN/s
Grahic Jump Location
Elastic modulus of LDPE versus loading rate for a constant maximum load of 150 μN

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In