0
TECHNICAL PAPERS

Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code

[+] Author and Article Information
C. Jacq

SNECMA, direction technique, Centre de Villaroche, 77550 Moissy Cramayel, France

D. Nélias

Laboratoire de Mécanique des Contacts (CNRS UMR 5514), Institut national des sciences appliquées, 69621 Villeurbanne Cedex, France

G. Lormand

Groupe d’Etude Métallurgie Physique et Physique des Matériaux (CNRS UMR 5510), Institut national des sciences appliquées, 69621 Villeurbanne Cedex, France

D. Girodin

SNR Roulements, BP 2017, 74010 Annecy, France

J. Tribol 124(4), 653-667 (Sep 24, 2002) (15 pages) doi:10.1115/1.1467920 History: Received June 13, 2001; Revised November 02, 2001; Online September 24, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lamagnère,  P., Fougères,  R., Lormand,  G., Vincent,  A., Girodin,  D., Dudragne,  G., and Vergne,  F., 1998, “A Physically Based Model for Endurance Limit of Bearing Steels,” ASME J. Tribol., 120, pp. 421–426.
Barber,  J. R., and Ciavarella,  M., 2000, “Contact Mechanics,” Int. J. Solids Struct., 37, pp. 29–43.
Tichy,  J. A., and Meyer,  D. M., 2000, “Review of Solid Mechanics in Tribology,” Int. J. Solids Struct., 37, pp. 391–400.
Archard, J. F., Hunt, R. T., and Onions, R. A., 1975, “Stylus Profilometry and the Analysis of the Contact of Rough Surfaces,” The Mechanics of the Contact Between Deformable Bodies, Delft University Press, pp. 282–303.
Greenwood,  J. A., and Williamson,  J. B. P., 1966, “Contact of Nominally Flat Surfaces,” Proc. R. Soc. London, Ser. A, 295, pp. 300–319.
Zhao,  Y. W., Maietta,  D. M., and Chang,  L., 2000, “An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow,” ASME J. Tribol., 122, pp. 86–93.
Hahn,  G. T., Bhargava,  V., Rubin,  C. A., Chan,  Q., and Kim,  K., 1987, “Analysis of the Rolling Contact Residual Stresses and Cyclic Plastic Deformation of SAE 52100 Steel Ball Bearings,” ASME J. Tribol., 109, pp. 618–626.
Gupta,  V., Hahn,  G. T., Bastias,  P. C., and Rubin,  C. A., 1995, “Contribution of Surface Irregularities to Rolling Contact Plasticity in Bearing Steels,” ASME J. Tribol., 117, pp. 660–666.
Dang Van,  K., and Maitournam,  M. H., 1993, “Steady-State Flow in Classical Elastoplasticity: Applications to Repeated Rolling and Sliding Contact,” J. Mech. Phys. Solids, 41(11), pp. 1691–1710.
Hearle,  A. D., and Johnson,  K. L., 1987, “Cumulative Plastic Flow in Rolling and Sliding Line Contact,” ASME J. Appl. Mech., 54, pp. 1–7.
Virmoux, P., Inglebert, G., and Gras, R., 1994, “Characterisation of Elastic-Plastic Behaviour for Contact Purposes on Surface Hardened Materials,” Proc., 20th Leeds-Lyon Symposium on Tribology, Lyon, France, 7–10 September 1993, Tribology series, Elsevier, 27 , pp. 287–301.
Mayeur,  C., Sainsot,  P., and Flamand,  L., 1995, “A Numerical Elastoplastic Model for Rough Contact,” ASME J. Tribol., 117, pp. 422–429.
Polonsky,  I. A., and Keer,  L. M., 2000, “A Fast and Accurate Method for Numerical Analysis of Elastic Layered Contacts,” ASME J. Tribol., 122, pp. 30–35.
Lubrecht,  A. A., and Ioannides,  E., 1991, “A Fast Solution for the Dry Contact Problem and the Associated Subsurface Stress Field, Using Multilevel Techniques,” ASME J. Tribol., 113, pp. 128–133.
Xu,  G., Sadeghi,  F., and Hoeprich,  M., 1997, “Residual Stresses Due to Debris Effects in EHL Contacts,” Tribol. Trans., 40, pp. 613–621.
Liu,  G., Wang,  Q., and Liu,  S., 2001, “A Three-Dimensional Thermal-Mechanical Asperity Contact Model for Two Nominally Flat Surfaces in Contact,” ASME J. Tribol., 123, pp. 595–602.
Jacq, C., Lormand, G., Vincent, A., Nélias, D., and Dudragne, G., “On the Influence of Residual Stresses on the Determination of the Microplasticity Properties of a Nitrided Steel by Nano-Indentation,” to appear in Materials Science and Engineering.
Brebbia, L. C., 1980, The Boundary Element Method for Engineers, Pentech Press, London.
Mayeur, C., 1995, “Modélisation du contact rugueux élastoplastique,” Ph.D. Thesis, INSA Lyon, France.
Blomerus,  P. M., Hills,  D. A., and Kelly,  P. A., 1999, “The Distributed Dislocation Method Applied to the Analysis of Elastoplastic Strain Concentrations,” J. Mech. Phys. Solids, 47, pp. 1007–1026.
Coulon, S., Ville, F., and Nélias, D., 2001, “Numerical and Experimental Investigations on Rolling Contact Fatigue for Dented Surfaces,” Proc., 27th Leeds-Lyon Symposium on Tribology, Lyon, France, 5–8 September 2000, Tribology series, Elsevier, 39 , pp. 459–467.
Love, A. E. H., 1952, A Treatise on the Mathematical Theory of Elasticity, 4th Ed. Cambridge University Press, Cambridge.
Chiu,  Y. P., 1978, “On the Stress Field and Surface Deformation in a Half-Space With a Cuboidal Zone in which Initial Strains Are Uniform,” ASME J. Appl. Mech., 45, pp. 302–306.
Chiu,  Y. P., 1977, “On the Stress Field due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space,” ASME J. Appl. Mech., 44, pp. 587–590.
Vergne, F., 1985, “Calcul des déplacements et des contraintes dans un demi-espace élastique chargé en surface par des actions distribuées normales et tangentielles quelconques,” M.Sc. Thesis, INSA Lyon, France.
Sainsot, P., Jacq, C., and Nélias, D., “A Numerical Model for Elastoplastic Rough Contact,” to appear in Computer Modeling in Engineering & Sciences.
Lemaı⁁tre, L., Chaboche, J. L., 1988, Mécanique des matériaux solides, Dunod, Paris.
El Ghazal, H., 1999, “Etude des propriétés microstructurales et mécaniques des aciers 16NiCrMo13 cémenté et 32CrMoV13 nitruré-Application à la prévision de leur limite d’endurance en fatigue de roulement,” Ph.D. Thesis, INSA Lyon, France.

Figures

Grahic Jump Location
Contact problem description
Grahic Jump Location
Surface separation. Representation in the plane (0,x⃗1,x⃗3).
Grahic Jump Location
Load history description
Grahic Jump Location
Plastic strain increment algorithm
Grahic Jump Location
Elastic-plastic contact problem resolution algorithm
Grahic Jump Location
Cuboid of constant plastic strain
Grahic Jump Location
Dimensionless normal surface displacement under load for a Hertzian pressure versus dimensionless distance from center of symmetry
Grahic Jump Location
Load versus rigid body displacement. Rigid punch.
Grahic Jump Location
Load versus rigid body displacement. Deformable punch.
Grahic Jump Location
Meshing of the elastic punch
Grahic Jump Location
Load versus rigid body displacement. Rigid punch and elastic-plastic half-space.
Grahic Jump Location
Influence of plasticity on pressure distribution. Load of 650 mN.
Grahic Jump Location
Plastic strain versus depth along the contact axis
Grahic Jump Location
Residual stress versus depth along the contact axis
Grahic Jump Location
Plastic strain profile at 2 microns far from the contact axis
Grahic Jump Location
Residual stress profile at 2 microns far from the contact axis
Grahic Jump Location
Residual print depth versus applied load 28
Grahic Jump Location
Surface displacement at the center of the rolling track after unloading
Grahic Jump Location
Elastic and elastic-plastic dented contact. Contact pressure.
Grahic Jump Location
Residual stress σ11 in MPa in the plane x3=65 μm
Grahic Jump Location
Residual stress σ11 in MPa. Profile at x2=0;x3=75 μm. Comparison between vertical loading and rolling.
Grahic Jump Location
Superposition of solutions

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In