0
TECHNICAL PAPERS

A Scale-Dependent Model for Multi-Asperity Contact and Friction

[+] Author and Article Information
George G. Adams, Sinan Müftü, Nazif Mohd Azhar

Department of Mechanical, Industrial and Manufacturing Engineering, 334 SN, Northeastern University, Boston, MA 02115

J. Tribol 125(4), 700-708 (Sep 25, 2003) (9 pages) doi:10.1115/1.1573232 History: Received September 24, 2002; Revised January 14, 2003; Online September 25, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tabor,  D., 1981, “Friction-The Present State of Our Understanding,” ASME J. Lubr. Technol., 103, pp. 169–179.
Greenwood,  J. A., and Williamson,  J. B. P., 1966, “Contact of Nominally Flat Surfaces,” Proc. R. Soc. London, Ser. A, A295, pp. 300–319.
Hutchinson,  J. W., 2000, “Plasticity at the Micron Scale,” Int. J. Solids Struct., 37, pp. 225–238.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
McCool,  J. I., 1986, “Comparison of Models for the Contact of Rough Surfaces,” Wear, 107, pp. 37–60.
Greenwood,  J. A., and Tripp,  J. H., 1971, “The Contact of Two Nominally Flat Rough Surfaces,” Proc. Inst. Mech. Eng., 185, pp. 625–633.
Johnson,  K. L., Kendall,  K., and Roberts,  A. D., 1971, “Surface Energy and the Contact of Elastic Solids,” Proc. R. Soc. London, Ser. A, A324, pp. 301–313.
Derjaguin,  B. V., Muller,  V. M., and Toporov,  Y. P., 1975, “Effect of Contact Deformations on the Adhesion of Particles,” J. Colloid Interface Sci., 53, pp. 314–326.
Tabor,  D., 1976, “Surface Forces and Surface Interactions,” J. Colloid Interface Sci., 58, pp. 2–13.
Maugis,  D., 1992, “Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model,” J. Colloid Interface Sci., 150, pp. 243–269.
Johnson,  K. L., and Greenwood,  J. A., 1997, “An Adhesion Map for the Contact of Elastic Spheres,” J. Colloid Interface Sci., 192, pp. 326–333.
Dugdale,  D. S., 1960, “Yielding in Steel Sheets Containing Slits,” J. Mech. Phys. Solids, 8, pp. 100–104.
Chang,  R. W., Etsion,  I., and Bogy,  D. B., 1987, “An Elastic-Plastic Model for the Contact of Rough Surfaces,” ASME J. Tribol., 109, pp. 257–263.
Chang,  R. W., Etsion,  I., and Bogy,  D. B., 1988, “Adhesion Model for Metallic Rough Surfaces,” ASME J. Tribol., 110, pp. 50–56.
Chang,  R. W., Etsion,  I., and Bogy,  D. B., 1988, “Static Friction Coefficient Model for Metallic Rough Surfaces” ASME J. Tribol., 110, pp. 57–63.
Hamilton,  G. M., 1983, “Explicit Equations for the Stresses Beneath a Sliding Spherical Contact,” Proc. Inst. Mech. Eng., 197C, pp. 53–59.
Fuller,  K. N. G., and Tabor,  D., 1975, “The Effect of Surface Roughness on the Adhesion of Elastic Solids,” Proc. R. Soc. London, Ser. A, 345, pp. 327–342.
Stanley,  H. M., Etsion,  I., and Bogy,  D. B., 1990, “Adhesion of Contacting Rough Surfaces in the Presence of Sub-Boundary Lubrication,” ASME J. Tribol., 112, pp. 98–104.
Polycarpou,  A. A., and Etsion,  I., 1998, “Static Friction of Contacting Real Surfaces in the Presence of Sub-Boundary Lubrication,” ASME J. Tribol., 120, pp. 296–303.
Maugis,  D., 1996, “On the Contact and Adhesion of Rough Surfaces,” J. Adhes. Sci. Technol., 10, pp. 161–175.
Tworzydlo,  W. W., Cecot,  W., Oden,  J. T., and Yew,  C. H., 1998, “Computational Micro- and Macroscopic Models of Contact and Friction: Formulation, Approach and Applications,” Wear, 220, pp. 113–140.
Kapoor,  A., Williams,  J. A., and Johnson,  K. L., 1994, “The Steady State Sliding of Rough Surfaces,” Wear, 175, pp. 81–92.
Carpick,  R. W., Agrait,  N., Ogletree,  D. F., and Salmeron,  M., 1996, “Measurement of Interfacial Shear (Friction) With an Ultrahigh Vacuum Atomic Force Microscope,” J. Vac. Sci. Technol. B, 14, pp. 1289–1295.
Homola,  A. M., Israelachvili,  J. N., McGuiggan,  P. M., and Gee,  M. L., 1990, “Fundamental Experimental Studies in Tribology: The Transition From ‘Interfacial’ Friction of Undamaged Molecularly Smooth Surfaces to ‘Normal’ Friction with Wear,” Wear, 136, pp. 65–83.
Hurtado,  J. A., and Kim,  K.-S., 1999, “Scale Effects in Friction of Single Asperity Contacts: Part I; From Concurrent Slip to Single-Dislocation-Assisted Slip,” Proc. R. Soc. London, Ser. A, A455, pp. 3363–3384.
Hurtado,  J. A., and Kim,  K.-S., 1999, “Scale Effects in Friction in Single Asperity Contacts: Part II; Multiple-Dislocation-Cooperated Slip,” Proc. R. Soc. London, Ser. A, A455, pp. 3385–3400.
Adams, G. G., Müftü, S., and Mohd Azhar, N., 2002, “A Nano-Scale Multi-Asperity Model for Contact and Friction,” Paper No. ASME 2002-TRIB-258.

Figures

Grahic Jump Location
The topography of a rough surface and a smooth flat surface
Grahic Jump Location
Relationship between the dimensionless friction stress and the dimensionless contact radius according to the HK model
Grahic Jump Location
Scaled coefficient of friction (αμ) versus scaled normal force (P/αNGb2) for various values of the friction regime parameter (β), without adhesion (γ=0)
Grahic Jump Location
Scaled coefficient of friction (αμ) versus scaled normal force (P/αNGb2) for various values of the surface roughness parameter (α), with the friction regime parameter given by β=1000, and the surface energy of adhesion parameter given by γ=10−3
Grahic Jump Location
Coefficient of friction (μ) versus the dimensionless normal force (P/NGb2) for various values of the friction regime parameter (β), with the surface roughness parameter given by α=0.01, with adhesion (γ=10−3, solid lines) and without adhesion (γ=0, dashed lines)
Grahic Jump Location
Coefficient of friction (μ) versus the dimensionless normal force (P/NGb2) for various values of the surface energy of adhesion parameter (γ), with the surface roughness parameter given by α=0.01 and the friction regime parameter β=1000
Grahic Jump Location
Dimensionless normal force (P/NGb2) versus dimensionless separation (d/σ), for various values of the surface roughness parameter (α) and the friction regime parameter (β), and with the surface energy of adhesion parameter given by γ=10−3. Dashed lines indicate that the normal force is tensile.
Grahic Jump Location
Dimensionless friction force (F/NGb2) versus dimensionless separation (d/σ), for various values of the surface roughness parameter (α) and the friction regime parameter (β), and with the surface energy of adhesion parameter given by γ=10−3
Grahic Jump Location
Dimensionless average contact pressure (P/E*A) versus dimensionless normal force (P/NGb2), for various values of the surface roughness parameter (α) and the friction regime parameter (β), with the surface energy of adhesion parameter given by γ=10−3 (solid lines), and γ=0 (dashed lines)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In