0
TECHNICAL PAPERS

Elasto-Plastic Normal Contact of Three-Dimensional Fractal Surfaces Using Halfspace Theory

[+] Author and Article Information
K. Willner

Institut A für Mechanik, Universität Stuttgart, Pfaffenwaldring 9, 70550 Stuttgart, Germany

J. Tribol 126(1), 28-33 (Jan 13, 2004) (6 pages) doi:10.1115/1.1631019 History: Received October 16, 2002; Revised April 24, 2003; Online January 13, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bowden,  F. P., 1957, “A Review of the Friction of Solids,” Wear, 1, pp. 333–346.
Archard,  J. F., 1957, “Elastic Deformation and the Laws of Friction,” Proc. R. Soc. London, Ser. A, 243, pp. 190–205.
Greenwood,  J. A., and Williamson,  J. B. P., 1966, “Contact of Nominally Flat Surfaces,” Proc. R. Soc. London, Ser. A, 295, pp. 300–319.
Greenwood,  J. A., and Tripp,  J. H., 1967, “The Elastic Contact of Rough Spheres,” ASME J. Appl. Mech., 34, pp. 153–159.
Greenwood,  J. A., and Tripp,  J. H., 1971, “The Contact of Two Nominally Flat Rough Surfaces,” Proc. Inst. Mech. Eng., 185, pp. 625–633.
Nayak,  P. R., 1971, “Random Process Model of Rough Surfaces,” ASME J. Lubr. Technol., 93, pp. 398–407.
Whitehouse,  D. J., and Archard,  J. F., 1970, “The Properties of Random Surfaces of Significance in Their Contact,” Proc. R. Soc. London, Ser. A, 316, pp. 97–121.
Whitehouse,  D. J., and Phillips,  M. J., 1978, “Discrete Properties of Random Surfaces,” Philos. Trans. R. Soc. London, Ser. A, 290, pp. 267–298.
Whitehouse,  D. J., and Phillips,  M. J., 1982, “Two-Dimensional Discrete Properties of Random Surfaces,” Philos. Trans. R. Soc. London, Ser. A, 305, pp. 441–468.
Greenwood,  J. A., 1984, “A Unified Theory of Surface Roughness,” Proc. R. Soc. London, Ser. A, 393, pp. 133–157.
Poon,  C. Y., and Bhushan,  B., 1995, “Comparison of Surface Roughness Measurements by Stylus Profiler, AFM and Non-Contact Optical Profiler,” Wear, 190, pp. 76–88.
Mandelbrot, B., 1983, The Fractal Geometry of Nature, Freeman, New York.
Gagnepain,  J. J., and Roques-Carmes,  C., 1986, “Fractal Approach to Two-Dimensional and Three-Dimensional Surface Roughness,” Wear, 109, pp. 119–126.
Ling, F. F., and Calabrese, S. J., 1986, “On Fractal Dimension of Engineering Surfaces,” Approaches to Modeling of Friction and Wear, F. F. Ling and C. H. T. Pan, eds., Springer, New York.
Ling,  F. F., 1987, “Scaling Law for Contoured Length of Engineering Surfaces,” J. Appl. Phys., 62, pp. 2570–2572.
He,  L., and Zhu,  J., 1997, “The Fractal Character of Processed Metal Surfaces,” Wear, 208, pp. 17–24.
Ju,  Y., and Farris,  T. N., 1996, “Spectral Analysis of Two-Dimensional Contact Problems,” ASME J. Tribol., 118, pp. 320–328.
Stanley,  H. M., and Kato,  T., 1997, “An FFT-Based Method for Rough Surface Contact,” ASME J. Tribol., 119, pp. 481–485.
Majumdar,  A., and Tien,  C. L., 1990, “Fractal Characterization and Simulation of Rough Surfaces,” Wear, 136, pp. 313–327.
Majumdar,  A., and Bhushan,  B., 1990, “Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces,” ASME J. Tribol., 112, pp. 205–216.
Tian,  X., and Bhushan,  B., 1996, “A Numerical Three-Dimensional Model for the Contact of Rough Surfaces by Variational Principle,” ASME J. Tribol., 118, pp. 33–42.
Ren,  N., and Lee,  S. C., 1993, “Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method,” ASME J. Tribol., 115, pp. 597–601.
Ren,  N., and Lee,  S. C., 1994, “The Effects of Surface Roughness and Topography on the Contact Behavior of Elastic Bodies,” ASME J. Tribol., 116, pp. 804–811.
Panagiotopoulos, P. D., and Panagouli, O. K., 1993, “Unilateral Contact and Friction in Fractal Interfaces,” Contact Mechanics-Computational Techniques, M. H. Aliabadi and C. A. Brebbia, eds., Computational Mechanics Publications, Southampton, pp. 353–360.
Panagiotopoulos,  P. D., Panagouli,  O. K., and Mistakidis,  E. S., 1994, “Fractal Geometry in Structures. Numerical Methods for Convex Energy Problems,” Int. J. Solids Struct., 31, pp. 2211–2228.
Ciavarella,  M., and Demelio,  G., 2001, “Elastic Multiscale Contact of Rough Surfaces: Archard’s Model Revisited and Comparison with Modern Fractal Models,” ASME J. Appl. Mech., 68, pp. 496–498.
Borri-Brunetto, M., Carpinteri, A., and Chiaia, B., 1998, “Lacunarity of the Contact Domain Between Elastic Bodies with Rough Boundaries,” PROBAMAT-21st Century: Probabilities and Materials, G. Frantziskonis, ed., Kluwer, Dordrecht, pp. 45–66.
Ciavarella,  M., Demelio,  G., Barber,  J. R., and Jang,  Y. H., 2000, “Linear Elastic Contact of the Weierstrass Profile,” Proc. R. Soc. London, Ser. A, 456, pp. 387–405.
Majumdar,  A., and Bhushan,  B., 1991, “Fractal Model of Elastic-Plastic Contact Between Rough Surfaces,” ASME J. Tribol., 113, pp. 1–11.
Warren,  T. L., and Krajcinovic,  D., 1996, “Random Cantor Set Models for the Elastic-Perfectly Plastic Contact of Rough Surfaces,” Wear, 196, pp. 1–15.
Poon,  C. Y., and Sayles,  R. S., 1994, “Numerical Contact Model of a Smooth Ball on an Anisotropic Rough Surface,” ASME J. Tribol., 116, pp. 194–201.
Thomas,  T. R., and Sayles,  R. S., 1977, “Stiffness of Machine Tool Joints: A Random-Process Approach,” ASME J. Eng. Ind., 99, pp. 250–256.
Thomas, T. R., 1982, Rough Surfaces, Longman, London, New York.
Sayles,  R. S., and Thomas,  T. R., 1978, “Surface Topography as a Nonstationary Random Process,” Nature (London), 271, pp. 431–434.
Willner, K., 2001, “Surface Models for Contact Laws,” Computational Methods in Contact Mechanics V, J. Dominguez and C. A. Brebbia, eds., WIT Press, Southampton, pp. 3–10.
Peitgen, H.-O., and Barnsley, M. F., eds., 1988, The Science of Fractal Images, Springer, New York.
Ganti,  S., and Bhushan,  B., 1995, “Generalized Fractal Analysis and Its Applications to Engineering Surfaces,” Wear, 180, pp. 17–34.
Willner, K., 2000, “Contact Laws for Rough Surfaces,” Zeitschrift für angewandte Mathematik und Mechanik, 80 , pp. S73–S76.
Berry,  M. V., and Blackwell,  T. M., 1981, “Diffractal Echoes,” J. Phys. A, 14, pp. 3101–3110.
Kikuchi, N., and Oden, J. T., 1988, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Figures

Grahic Jump Location
Structure function for a measured surface
Grahic Jump Location
Pressure-gap relationship for elastic contact. Transition length xT=100 μm (×: λlim=7.81 μm, ⋆: λlim=31.25 μm, □: λlim=125.0 μm).
Grahic Jump Location
Pressure-gap relationship for plastic contact. Transition length xT=100 μm (×: λlim=7.81 μm, ⋆: λlim=31.25 μm, □: λlim=125.0 μm).
Grahic Jump Location
Area-pressure relationship for elastic contact. Transition length xT=100 μm (×: λlim=7.81 μm, ⋆: λlim=31.25 μm, □: λlim=125.0 μm).
Grahic Jump Location
Area-pressure relationship for plastic contact. Transition length xT=100 μm (×: λlim=7.81 μm, ⋆: λlim=31.25 μm, □: λlim=125.0 μm).
Grahic Jump Location
Pressure-gap relationship for elastic contact. Transition length xT=10 μm. (×: λlim=7.81 μm, ⋆: λlim=31.25 μm, □: λlim=125.0 μm).
Grahic Jump Location
Pressure-gap relationship for plastic contact. Transition length xT=10 μm. (×: λlim=7.81 μm, ⋆: λlim=31.25 μm, □: λlim=125.0 μm).
Grahic Jump Location
Area-pressure relationship for elastic contact. Transition length xT=10 μm. (×: λlim=7.81 μm, ⋆: λlim=31.25 μm, □: λlim=125.0 μm).
Grahic Jump Location
Area-pressure relationship for plastic contact. Transition length xT=10 μm. (×: λlim=7.81 μm, ⋆: λlim=31.25 μm, □: λlim=125.0 μm).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In