0
TECHNICAL PAPERS

Waviness Deformation in Starved EHL Circular Contacts

[+] Author and Article Information
C. H. Venner

University of Twente, Faculty of Mechanical Engineering, Department of Engineering Fluid Dynamics, P.O. Box 217, 7500 AE Enschede, The Netherlands

G. Berger

Laboratoire de Mécanique des Contacts, UMR CNRS 5514, INSA de Lyon, 20 Ave. A. Einstein, 69621, Villeurbanne Cedex, France

P. M. Lugt

SKF Engineering & Research Centre, P.O. Box 2350, 3430 DT Nieuwegein, The Netherlands

J. Tribol 126(2), 248-257 (Apr 19, 2004) (10 pages) doi:10.1115/1.1572514 History: Received September 11, 2002; Revised December 30, 2002; Online April 19, 2004
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chiu,  Y. P., 1974, “An Analysis and Prediction of Lubricant Film Starvation in Rolling Contact Systems,” ASLE Trans., 17(1), pp. 22–35.
Guangteng,  G., Cann,  P. M., and Spikes,  H. A., 1992, “A Study of Parched Lubrication,” Wear, 153, pp. 91–105.
Chevalier, F., 1996, “Modélisation des Conditions d’Alimentation en Lubrifiant dans les Contacts Elastohydrodynamiques Ponctuels,” Ph.D. thesis, INSA de Lyon, France.
Cann, P. M., Lubrecht, A. A., and Venner, C. H., 2001, “Grease Lubrication of Rolling Element Bearings, A Model Future?,” Proceedings International Tribology Conference Nagasaki 2000, in press.
Wedeven,  L. D., Evans,  D., and Cameron,  A., 1971, “Optical Analysis of Ball Bearing Starvation,” ASME J. Lubr. Technol., pp.349–363.
Pemberton,  J., and Cameron,  A., 1976, “A Mechanism of Fluid Replenishment in Elastohydrodynamic Contacts,” Wear, 37, pp. 185–190.
Wolverigde,  P. E., Baglin,  K. P., and Archard,  J. F., 1971, “The Starved Lubrication of Cylinders in Line Contact,” Proc. IMechE, 198(81), pp. 1159–1169.
Ranger,  A. P., Ettles,  C. M. M., and Cameron,  A., “The Solution of the Point Contact Elastohydrodynamic Problem,” Proc. R. Soc. London, Ser. A, 346, pp. 227–244.
Hamrock,  B. J., and Dowson,  D., 1977, “Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part IV-Starvation Results,” ASME J. Tribol., pp. 15–23.
Elrod, H. G., and Adams, M. L., 1974, “A Computer Program for Cavitation and Starvation Problems,” Proceedings of the 1st Leeds-Lyon Symposium on Tribology, pp. 37–41.
Elrod,  H. G., 1981, “A Cavitation Algorithm,” ASME J. Lubr. Technol., 103, pp. 350–354.
Chevalier, F., Lubrecht, A. A., Cann, P. M. E., Colin, F., and Dalmaz, G., 1994, “Starved Film Thickness: A Qualitative Explanation,” Proceedings of the 21st Leeds-Lyon Symposium on Tribology, Elseviers Tribology Series, 30 , pp. 249–257.
Chevalier, F., Lubrecht, A. A., Cann, P. M. E., Colin, F., and Dalmaz, G., 1995, “Starvation Phenomena in EHL Point Contacts: Influence of Inlet Flow Distribution,” Proceedings of the 22nd Leeds-Lyon Symposium on Tribology, Elseviers Tribology Series, 31 , pp. 213–223.
Chevalier,  F., Lubrecht,  A. A., Cann,  P. M. E., Colin,  F., and Dalmaz,  G., 1998, “Film Thickness in Starved EHL Point Contacts,” ASME J. Tribol., 120, pp. 126–133.
Cann, P. M. E., Chevalier, F., and Lubrecht, A. A., 1997, “Track Depletion and Replenishment in a Grease Lubricated Point Contact: A Quantitative Analysis,” Proceedings 23rd Leeds-Lyon Symposium on Tribology, Elseviers Tribology Series, 32 , pp. 405–414.
Wijnant, Y. H., 1998, “Contact Dynamics in the Field of Elastohydrodynamic Lubrication,” Ph.D. Thesis, University of Twente, Enschede, The Netherlands, ISBN 90-36512239.
Wijnant, Y. H., and Venner, C. H., “Contact Dynamics in Starved Elastohydrodynamic Lubrication,” Proceedings of the 25th Leeds-Lyon Symposium on Tribology, Elsevier Tribology Series, 36 , pp. 705–716.
Dumont,  M.-L., Lugt,  P. M., and Tripp,  J. H., 2002, “Surface Feature Effects in Starved Circular EHL Contacts,” ASME J. Tribol., in press.
Venner, C. H., Couhier, F., Lubrecht, A. A., and Greenwood J., 1997, “Amplitude Reduction of Waviness in Transient EHL Line Contacts,” Proceedings 23rd Leeds-Lyon Symposium on Tribology, Elseviers Tribology Series, 32 , pp. 103–112.
Venner, C. H., Lubrecht, A. A., 1999, “Amplitude Reduction of Anisotropic Harmonic Surface Patterns in EHL Circular Contacts under Pure Rolling,” Proceedings of the 25th 1998 Leeds-Lyon Symposium on Tribology, Elsevier Tribology Series, 36 , pp. 151–162.
Venner, C. H., Kaneta, M., and Lubrecht, A. A., 2000, “Surface Roughness in Elastohydrodynamically Lubricated Contacts,” Proceedings of the 26th Leeds-Lyon Symposium on Tribology, Elsevier Tribology Series, 38 , pp. 25–36.
Hooke,  C. J., 1997, “Surface Roughness Modification in Elastohydrodynamic Line Contacts operating in the Elastic Piezoviscous Regime,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 212, pp. 149–146.
Hooke,  C., and Venner,  C. H., 2000, “Surface Roughness attenuation in line and point contacts,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 214, pp. 439–444.
Masen,  M. A., Venner,  C. H., Lugt,  P. M., and Tripp,  J. H., 2001, “Effects of Surface Micro-Geometry on the Lift-Off Speed of an EHL Contact,” STLE Tribol. Trans., in press.
Bayada,  G., Chambat,  M., and El Aloui,  M., 1990, “Variational Formulations and Finite Element Algorithms for Cavitation Problems,” ASME J. Tribol., 112, pp. 398–403.
Roelands, C. J. A., 1966, “Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils” Ph.D thesis, Technical University Delft, Delft, The Netherlands, (V. R. B., Groningen, The Netherlands).
Dowson, D., and Higginson, G. R., 1966, Elastohydrodynamic Lubrication, The Fundamentals of Roller and Gear Lubrication, Pergamon Press, Oxford, Great Britain.
Jakobsson, B., and Floberg, L., 1957, “The Finite Journal Bearing, Considering Vaporization,” Trans. Chalmers Univ. Tech. Göteborg, p. 190.
Olsson, K., 1965, “Cavitation in Dynamically Loaded Bearings,” Trans. Chalmers Univ. Tech. Göteborg, 308.
Brandt,  A., and Lubrecht,  A. A., 1990, “Multilevel Matrix Multiplication and Fast Solution of Integral Equations,” J. Comput. Phys., 90, pp. 348–370.
Venner, C. H., and Lubrecht, A. A., 2000, Multilevel Methods in Lubrication, Elsevier Tribology Series, 37 , ISBN 0-444-50503-2.
Venner,  C. H., and Morales Espejel,  G. E., 1999, “Amplitude Reduction of Small Amplitude Waviness in Transient Elastohydrodynamically Lubricated Line Contacts,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 213, pp. 487–504.
Damiens,  B., Venner,  C. H., Cann,  P. M. E., and Lubrecht,  A. A., 2001, “Starved Lubrication of Elliptical E.H.D. Contacts,” ASME J. Tribol., /in press.
Hamrock,  B. J., and Dowson,  D., 1977, “Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part III, Fully Flooded Results,” ASME J. Lubr. Technol., 99, pp. 264–276.
Nijenbanning,  G., Venner,  C. H., and Moes,  H., 1994, “Film Thickness in Elastohydrodynamically Lubricated Elliptic Contacts,” Wear, 176, pp. 217–229.
Hooke,  C. J., 1977, “The Elastohydrodynamic Lubrication of Heavily Loaded Contacts,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 19(4), pp. 149–156.

Figures

Grahic Jump Location
Illustration of pressurized and cavitated/starved region in an EHL contact with limited lubricant supply at the inlet
Grahic Jump Location
Dimensionless pressure P (top), film thickness H (center) and fractional film content θ as a function of X and Y for M=20,L=10. Starved contact: Hoil/Hcf=0.5.
Grahic Jump Location
Dimensionless pressure P (top) and film thickness H (bottom) as a function of X at the centerline Y=0 for the case M=20,L=10 and Hoil/Hcf=∞, 2, 1, 1/2, 1/4, and 1/8.
Grahic Jump Location
Dimensionless pressure P (top) and film thickness H (bottom) at the line X=0 as a function of Y for the case M=20,L=10 and Hoil/Hcf=∞, 2, 1, 1/2, 1/4, and 1/8.
Grahic Jump Location
Snapshot of the dimensionless pressure P (top), and film thickness H (bottom) as a function of X and Y at a given time for M=20,L=10,Σ=0. Transverse waviness, λx/a=1/2,λy/a=∞. Starved contact: Hoil/Hcf=0.5.
Grahic Jump Location
Dimensionless pressure (top) and film thickness (bottom) as a function of X at the centerline of the contact Y=0 for different Hoil.M=20,L=10,Σ=0. Transverse waviness, λx/a=1/2,λy/a=∞. Starved contact: Hoil/Hcf=∞,1,1/2,1/3,1/4.
Grahic Jump Location
Relative deformed amplitude Ad/Ai as a function of ∇=c(λ/a)(ᾱ)3/2/L−2 and Hoil/Hcf for transverse (top) and isotropic (bottom) waviness in a starved contact. The drawn line represents the predictions of Eq. (17).
Grahic Jump Location
Relative deformed amplitude Ad/Ai as a function of ∇̃=(Hcf/Hc)3/2∇ for transverse (top) and isotropic (bottom) waviness. The drawn line represents the predictions of Eq. (17) with ∇ replaced by ñabla.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In