0
TECHNICAL PAPERS

An Alternative Slicing Technique to Consider Pressure Concentrations in Non-Hertzian Line Contacts

[+] Author and Article Information
Roman Teutsch, Bernd Sauer

The University of Kaiserslautern, Institute of Machine Elements, Gears and Transmissions, Gottlieb-Daimler-Strasse, 67663 Kaiserslautern, Germany

J. Tribol 126(3), 436-442 (Jun 28, 2004) (7 pages) doi:10.1115/1.1739244 History: Received February 11, 2003; Revised October 23, 2003; Online June 28, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hertz, H., 1882, “Über die Berührung fester elastischer Körper,” Journal für reine und angewandte Mathematik, 92 , pp. 156–171.
Brändlein, J., Eschmann, P., Hasbargen, L., and Weigand, K., 1995, Die Wälzlagerpraxis, 3rd ed., Vereinigte Fachverlage GmbH.
Lundberg, G., 1939, “Elastische Berührung zweier Halbräume,” Forschung auf dem Gebiete des Ingenieurwesens, 10 (5), pp. 201–211.
Rothbart, H. A., 1985, Mechanical Design and Systems Handbook, 2nd ed., McGraw-Hill.
Young, W. C., and Roark, J. R., 1989, Roark’s Formulas for Stress and Strain, 6th ed., McGraw-Hill Professional.
Palmgren, A., 1959, Grundlagen der Wälzlagertechnik, 2nd ed., Franckh’sche Verlagshandlung, W. Keller & Co.
Kunert, K., 1961, “Spannungsverteilung im Halbraum bei elliptischer Flächenpressungsverteilung über einer rechteckigen Druckfläche,” Forschung auf dem Gebiete des Ingenieurwesens, 27 (6), pp. 165–174.
Houpert,  L., 2001, “An Engineering Approach to Hertzian Contact Elasticity—Part I,” ASME J. Tribol., 123, pp. 582–588.
De Mul,  J. M., Kalker,  J. J., and Fredriksson,  B., 1986, “The Contact Between Arbitrarily Curved Bodies of Finite Dimensions,” ASME J. Tribol., 108, pp. 140–148.
Conry,  T. F., and Seirig,  A., 1971, “A Mathematical Programming Method for Design of Elastic Bodies in Contact,” ASME J. Appl. Mech., pp. 387–392.
Singh,  K. P., and Paul,  B., 1974, “Numerical Solution of Non-Hertzian Elastic Contact Problems,” ASME J. Appl. Mech., pp. 484–490.
Reusner, H., 1977, “Druckflächenbelastung und Oberflächenverschiebung im Wälzkontakt von Rotationskörpern,” Dissertation, University of Karlsruhe, Germany.
Nayak,  L., and Johnson,  K. L., 1979, “Pressure Between Elastic Bodies Having a Slender Area of Contact and Arbitrary Profiles,” Int. J. Mech. Sci., 21, pp. 237–247, Pergamon Press.
Hartnett,  M. J., 1980, “A General Numerical Solution For Elastic Body Contact Problems,” ASME J. Appl. Mech., 39, pp. 51–66.
Harris, T. A., 1984, Rolling Bearing Analysis, 2nd ed., John Wiley & Sons, Inc.

Figures

Grahic Jump Location
Sketch of a roller bearing case study taken from 8
Grahic Jump Location
Inner-race-to-roller-contact, comparison of δ=f(Q)
Grahic Jump Location
Outer-race-to-roller-contact, comparison of δ=f(Q)
Grahic Jump Location
Sketch of roller-plate contact model
Grahic Jump Location
Comparison of deflection-load relationships with FEM data
Grahic Jump Location
Comparison of alternative slicing technique (AST) total contact load with FEM data
Grahic Jump Location
Comparison of AST pressure distribution with FEM data
Grahic Jump Location
Application of AST to a Lundberg-profiled roller in contact with a thick plate
Grahic Jump Location
Application of AST to a Lundberg-profiled roller in contact with a thinner plate
Grahic Jump Location
Application of AST to the contact of two disks taken from 9, no misalignment
Grahic Jump Location
Application of AST to the contact of two disks taken from 9, misalignment θ=0.05 deg

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In