0
Article

An EHD Model to Predict the Interdependent Behavior of Two Dynamically Loaded Hybrid Journal Bearings

[+] Author and Article Information
Aurelian Fatu, Mohamed Hajjam, Dominique Bonneau

Laboratoire de Mécanique des Solides, Université de Poitiers, UMR CNRS 6610, 4, Avenue de Varsovie, 16021 Angoule⁁me Cedex, France

J. Tribol 127(2), 416-424 (Apr 07, 2005) (9 pages) doi:10.1115/1.1866162 History: Received February 10, 2004; Revised December 15, 2004; Online April 07, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fantino,  B., Fre⁁ne,  J., and Duparquet,  J., 1979, “Elastic Connecting-rod Bearing With Piezoviscous Lubricant: Analysis of the Steady State Characteristics,” ASME J. Lubr. Technol., 101, pp. 190–220.
Fantino, B., 1981, “Influence des défauts de forme et des déformations élastique des surfaces en lubrification hydrodynamique sous charges statiques et dynamiques,” Thèse No. 1-DE-8122, INSA de Lyon, France.
Fantino,  B., and Fre⁁ne,  J., 1985, “Comparison of Dynamic Behavior of Elastic Connecting-Rod Bearing in Both Petrol and Diesel Engines,” ASME J. Tribol., 107, pp. 87–91.
Oh,  K. P., and Goenka,  P. K., 1985, “The Elastohydrodynamic Solution of Journal Bearing Under Dynamic Loading” ASME J. Tribol., 107, pp. 389–395.
McIvor,  J. D. C., and Fenner,  D. N., 1989, “Finite Element Analysis of Dynamically Loaded Flexible Journal Bearings: A Fast Newton–Raphson Method,” ASME J. Tribol., 111, pp. 597–604.
Bonneau,  D., Guines,  D., Fre⁁ne,  J., and Toplosky,  J., 1995, “EHD Analysis, Including Structural Inertia Effects and Mass-Conserving Cavitation Model,” ASME J. Tribol., 117, pp. 403–410.
Boedo,  S., and Booker,  J. F., 1997, “Surface Roughness and Structural Inertia in a Mode-Based Mass-Conserving Elastohydrodynamic Lubrication Model,” ASME J. Tribol., 119, pp. 449–455.
Booker,  J. F., and Boedo,  S., 2001, “Finite Element Analysis of Elastic Engine Bearing Lubrication: Theory,” Rev. Eur. Éléments Finis,10, pp. 705–724.
Bonneau, D., Chomat, A. M., Garnier, T., and Grente, C., 2000, “3D EHD Lubrication Optimised Design of a Cylinder in Line Automotive Engine Crankshaft,” 26th Leeds-Lyon Symposium of Tribology, pp. 391–398.
Chomat,  A. M., and Bonneau,  D., 2001, “Modélisation par ma Méthode des Éléments Finis de la Lubrification EHD des Paliers de Vilbrequin des Moteurs Thermiques,” Rev. Eur. Éléments Finis,10, pp. 791–814.
Garnier,  T., Bonneau,  D., and Grente,  C., 1999, “Three-Dimensional EHD Behavior of the Engine Block/Crankshaft Assembly for a Four Cylinder Inline Automotive Engine,” ASME J. Tribol., 121, pp. 721–729.
Bonneau,  D., and Hajjam,  M., 2001, “Modélisation de la Rupture et de la Reformation des Films Lubrifiants Dans les Contacts Élastohydrodynamiques,” Rev. Eur. Éléments Finis,10, pp. 679–704.
McIvor,  J. D. C., and Fenner,  D. N., 1988, “An Evaluation of Eight-Node Quadrilateral Elements for the Analysis of Dynamically Loaded Hydrodynamic Journal Bearing,” Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci., 202, No C2, pp. 95–101.
Zienkiewicz, O. C., 1977, The Finite Element Method, Mc Graw-Hill Partc: Mech. Eng. Sci., London.

Figures

Grahic Jump Location
External load at 20 000 rev/min
Grahic Jump Location
Maximum film pressure during the cycle
Grahic Jump Location
Maximum film pressure and maximum pocket pressure evolution during the cycle for bearing 1
Grahic Jump Location
Maximum film pressure and maximum pocket pressure evolution during the cycle for bearing 2
Grahic Jump Location
Minimum film thickness evolution during the cycle for the two bearings
Grahic Jump Location
Oil flow leakage evolution during the cycle
Grahic Jump Location
Power loss evolution during the cycle
Grahic Jump Location
Radial shaft deformation when the applied load is maximum (0 deg rotation angle—reference case)
Grahic Jump Location
Radial housing deformation when the applied load is maximum (0 deg rotation angle—reference case)
Grahic Jump Location
Bearing film thickness when the applied load is maximum (0 deg rotation angle—reference case)
Grahic Jump Location
Bearing pressure field when the applied load is maximum (0 deg rotation angle—reference case)
Grahic Jump Location
Bearing pressure field when the applied load is maximum (0 deg rotation angle—100% applied load increasing)
Grahic Jump Location
Maximum film pressure and maximum pocket pressure evolution during the cycle for bearing 1 at 1000 rev/min

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In