0
RESEARCH PAPERS

A Study of Roughness and Non-Newtonian Effects in Lubricated Contacts

[+] Author and Article Information
Malal Kane

Laboratoire de dynamique des machines et des structures (LDMS)

Benyebka Bou-Said

Laboratoire de Mécanique des Contacts et des Solides (LamCos) Institut National des Sciences Appliquées de Lyon (INSA), 69621 Villeurbanne, France

J. Tribol 127(3), 575-581 (Jun 13, 2005) (7 pages) doi:10.1115/1.1866169 History: Received May 28, 2004; Revised December 17, 2004; Online June 13, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Elrod,  H. G., 1979, “A general theory for laminar lubrication with Reynolds Roughness,” ASME J. Lubr. Technol., 101, pp. 2–9.
Tichy, J., and Bou-Saı̈d, B., “On the transition from Reynolds to stokes equation,” Proceedings of the Leeds-Lyon symposium, to be published.
Bushan, B., 1990, Tribology and Mechanics of Magnetic Storage Devices, Springer Verlag New York.
Patir,  N., and Cheng,  H. S., 1978, “An average flow model for determining effects of three dimensional roughness on partial hydrodynamic lubrication,” ASME J. Lubr. Technol., 100, pp. 12–17.
Bushan,  B., and Tonder,  K., 1989, “Roughness-induced shear and squeeze film effects in magnetic recording. Part. ii. Applications,” ASME J. Tribol., 111, pp. 228–237.
Christensen, H., and Tonder, K., 1969 “Tribology of rough surfaces, stochastic models of hydrodynamic lubrication,” Technical Report, SINETF Report N 10/69-18, University of Tronhein, Norway.
Mitsuya,  Y., and Fukui,  S., 1986, “Stokes roughness effects on hydrodynamic lubrication, Part. i. comparison between incompressible and compressible lubricating films,” ASME J. Tribol., 108, pp. 151–158.
Patir,  N., and Cheng,  H. S., 1979, “Application of average flow model to lubrication between rough sliding surfaces,” ASME J. Tribol., 101, pp. 220–230.
Mitsuya,  Y., Ohkybo,  T., and Ota,  H., 1989, “Averaged Reynolds equation extended to gas lubricant possessing surface roughness in the slip flow regime: Approximate method and confirmation experiments,” ASME J. Tribol., 111, pp. 495–503.
Bushan,  B., 1992, “Magnetic slider/rigid disk substrate materials and disk texturing techniques—status and future outlook,” Adv. Inf. Storage Syst., 5, pp. 175–209.
Najji,  B., Bou-Saı̈d,  B., and Berthe,  D., 1989, “New formulation for lubrication with non-newtonian fluids,” ASME J. Tribol., 111(1), p. 29.
Bou-Saı̈d, B., 1993, “Habilitation à diriger des recherches, spécialité Mécanique,” Institut Nationale des Sciences Appliquées de Lyon, Université Claude Bernard, Lyon 1.
Najji, B., 1989, “Effets Non-Newtonien dans les paliers: Etudes statique et dynamique par éléments finis,” Thèse de doctorat d’ès science, Ecole Mohammedia D’ingénieurs, Université Mohammed 5.
Jaı̈,  M., 1995, “Homogenization and two-scale convergence of the compressible Reynolds lubrication equation modelling the flying characteristics of a rough magnetic head over a rough rigid-disk surface,” Math. Modell. Numer. Anal., 29(2), pp. 199–233.
Buscaglia,  G., and Jaı̈,  M., 2001, “A new numerical scheme for non uniform homogenized problems: Application to the non linear Reynolds compressible equation,” Math. Probl. Eng., 7(4), pp. 355–377.
Jaı̈,  M., and Bou-Saı̈d,  B., 2002, “A comparison of homogenization and averaging techniques for treatment of roughness in Boltzmann flow modified Reynolds equation,” ASME J. Tribol., 124, pp. 327–355.
Kane, M., 2003, “Contribution à l’étude de l’influence de la rugosité et des effets non-newtonien dans les contact sévères lubrifies,” Thèse de doctorat, Institut Nationale des Sciences Appliquées de Lyon.
Wang,  P., Keith,  T. G., and Vaidyanathan,  K., 2000, “Combined surface roughness pattern and non-Newtonian effects on the performance of dynamically loaded journal bearings,” Tribol. Trans., 45(1), pp. 1–10.

Figures

Grahic Jump Location
Geometry considered showing coordinates and film thickness
Grahic Jump Location
Types of roughness considered
Grahic Jump Location
The pressure field for three types of roughness considered
Grahic Jump Location
Load variation with elasticity, longtudinal roughness, orientation 1
Grahic Jump Location
Load variation with elasticity, anisotropic roughness, orientation 2
Grahic Jump Location
Load variation with elasticity, transverse roughness, orientation 5

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In