Furuma, K., Shirota, S., and Hirakawa, K., 1975, “The Subsurface-Initiated and the Surface-Initiated Rolling Fatigue Life of Bearing Steels,” "*Proceedings of the JSLE-ASLE International Conference on Lubrication*", Tokyo, pp. 475–483.

Ioannides, E., and Harris, T. A., 1985, “A New Fatigue Life Model for Rolling Bearings,” ASME J. Tribol., 107 (3), pp. 367–378.

Zhou, R. S., 1993, “Surface Topography and Fatigue Life of Rolling Contact Bearings,” Tribol. Trans.

[CrossRef], 36 , pp. 329–340.

Zaretsky, E. V., 1994, “Design for Life, Plan for Death,” Mach. Des., 66 (15), pp. 55–59.

Cheng, W., and Cheng, H. S., 1995, “Semi-Analytical Modeling of Crack Initiation Dominant Contact Fatigue for Roller Bearings,” "*Proceedings of the 1995 Joint ASME/STLE Tribology Conference*", Orlando, FL.

Ringsberg, J. W., 2001, “Life Prediction of Rolling Contact Fatigue Crack Initiation,” Int. J. Fatigue

[CrossRef], 23 (7), pp. 575–586.

Guo, Y. B., and Barkey, M. E., 2004, “Modeling of Rolling Contact Fatigue for Hard Machined Components With Process-Induced Residual Stress,” Int. J. Fatigue

[CrossRef], 26 (6), pp. 605–613.

Li, Y. G., Kang, G. Z., Wang, C. G., Dou, P., and Wang, J., 2006, “Vertical Short-Crack Behavior and Its Application in Rolling Contact Fatigue,” Int. J. Fatigue, 28 (7), pp. 804–811.

Lee, H. Y., and Lee, D. Y., 2007, “The Effects of Indentation on Rolling Contact Fatigue Under Line Contact,” J. Korean Inst. Metals Mater., 45 (3), pp. 163–168.

Girodin, D., Dudragne, G., Courbon, J., and Vincent, A., 2006, “Statistical Analysis of Nonmetallic Inclusions for the Estimation of Rolling Contact Fatigue Range and Quality Control of Bearing Steel,” J. ASTM Int., 3 (7), pp. 85–100.

Andersson, J., 2005, “The Influence of Grain Size Variation on Metal Fatigue,” Int. J. Fatigue, 27 (8), pp. 847–852.

Miller, K. J., 1999, “A Historical Perspective of the Important Parameters of Metal Fatigue and Problems for the Next Century,” "*Proceedings of the Seventh International Fatigue Congress, Fatigue ‘99*", Beijing, pp. 15–39.

Bogdanski, S., and Trajer, M., 2005, “A Dimensionless Multi-Size Finite Element Model of a Rolling Contact Fatigue Crack,” Wear, 258 , pp. 1265–1272.

Melander, A., 1997, “A Finite Element Study of Short Cracks With Different Inclusion Types Under Rolling Contact Fatigue Load,” Int. J. Fatigue

[CrossRef], 19 (1), pp. 13–24.

Liu, Y., Liu, L., and Mahadevan, S., 2007, “Analysis of Subsurface Crack Propagation Under Rolling Contact Loading in Railroad Wheels Using FEM,” Eng. Fract. Mech., 74 , pp. 2659–2674.

Guo, Y. B., and Barkey, M. E., 2004, “FE-Simulation of the Effects of Machining-Induced Residual Stress Profile on Rolling Contact of Hard Machined Components,” Int. J. Mech. Sci.

[CrossRef], 46 , pp. 371–388.

Sraml, M., Flasker, J., and Potrc, I., 2003, “Numerical Procedure for Predicting the Rolling Contact Fatigue Crack Initiation,” Int. J. Fatigue, 25 , pp. 585–595.

Ringsberg, J. W., Loo-Morrey, M., Josefson, B. L., Kapoor, A., and Beynon, J. H., 2000, “Prediction of Fatigue Crack Initiation for Rolling Contact Fatigue,” Int. J. Fatigue

[CrossRef], 22 , pp. 205–215.

Ghosh, S., and Mallett, R. L., 1994, “Voronoi Cell Finite Elements,” Compos. Struct., 50 , pp. 33–46.

Ghosh, S., and Moorthy, S., 1995, “Elastic-Plastic Analysis of Arbitrary Heterogeneous Materials With the Voronoi Finite Element Method,” Comput. Methods Appl. Mech. Eng., 121 , pp. 373–409.

Moorthy, S., and Ghosh, S., 1996, “A Model for Analysis of Arbitrary Composite and Porous Microstructures With Voronoi Cell Finite Elements,” Int. J. Numer. Methods Eng.

[CrossRef], 39 , pp. 2363–2398.

Grujicic, M., and Zhang, Y., 1998, “Determination of Effective Elastic Properties of Functionally Graded Materials Using Voronoi Cell Finite Element Method,” Mater. Sci. Eng., A, 251 , pp. 64–76.

Guo, R., Shi, H. J., and Yao, Z. H., 2003, “Modeling of Interfacial Debonding Crack in Particle Reinforced Composites Using Voronoi Cell Finite Element Method,” Comput. Mech., 32 , pp. 52–59.

Vena, P., and Gastaldi, D., 2005, “A Voronoi Cell Finite Element Model for the Indentation of Graded Ceramic Composites,” Composites, Part B, 36 , pp. 115–126.

Okabe, A., and Boots, B., 1992, "*Spatial Tessellations: Concepts and Applications of Voronoi Diagrams*", Wiley, New York.

Moller, J., 1994, "*Lectures Notes on Random Voronoi Tessellations*", Springer, Berlin.

Lundberg, G., and Palmgren, A., 1947, “Dynamic Capacity of Rolling Bearings,” Acta Polytech. Scand., Mech. Eng. Ser., 1 (3), pp. 7–53.

Raje, N., Sadeghi, F., Rateick, R. G., and Hoeprich, M. R., 2008, “A Numerical Model for Life Scatter in Rolling Element Bearings,” ASME J. Tribol.

[CrossRef], 130 , pp. 011011-1–011011-10.

Zaretsky, E. V., Parker, R. J., and Anderson, W. J., 1969, “A Study of Residual Stress Induced During Rolling,” ASME J. Lubr. Technol., 91 , pp. 314–319.

Chen, L., Chen, Q., and Shao, E., 1989, “Study on Initiation and Propagation Angles of Sub-Surface Cracks in GCr15 Bearing Steel Under Rolling Contact,” Wear

[CrossRef], 133 , pp. 205–218.

Chen, Q., Shao, E., Zhao, D., Gue, J., and Fan, Z., 1991, “Measurement of the Critical Size of Inclusions Initiating Contact Fatigue Cracks and Its Application in Bearing Steels,” Wear

[CrossRef], 147 , pp. 285–294.

Yoshioka, T., 1993, “Detection of Rolling Contact Sub-Surface Fatigue Cracks Using Acoustic Emissions Technique,” Lubr. Eng., 94 (4), pp. 303–308.

Harris, T. A., 2001, "*Rolling Bearing Analysis*", Wiley, New York, p. 696.