Leaderman, H., 1943, "*Elastic and Creep Properties of Filamentous Materials and Other Polymers*", Textile Foundation, Washington, D.C., pp. 175–185.

Tobolsky, A. V., 1956, “Stress Relaxation Studies of the Viscoelastic Properties of Polymers,” J. Appl. Phys., 27 (7), pp. 673–685.

[CrossRef]Schwarzl, F. and Staverman, A. J., 1952, “Time-Temperature Dependence of Linear Viscoelastic Behavior,” J. Appl Phys., 23 (8), pp. 838–843.

[CrossRef]Chazal, C., and Arfaoui, M., 2001, “Further Development in Thermodynamics Approach for Thermoviscoelastic Materials,” Mech. time-Dependent Mater., 5 , pp. 177–198.

[CrossRef]Taylor, R. L., and Chang, T. Y., 1966, “An Approximate Method for Thermoviscoelastic Stress Analysis,” Nucl. Eng., 4 (1), pp. 21–28.

[CrossRef]Taylor, R. L.Pister, K. S., and Goudreau, G. L., 1970, “Thermomechanical Analysis of Viscoelastic Solids,” Int. J. Numer. Methods. Eng., 2 (1), pp. 45–59.

[CrossRef]Hilton, H. H., and Yi, S., 1990, “Anisotropic Viscoelastic Finite Element Analysis of Mechanically and Hygrothermally Loaded Composites,” University of Illinois, U-C, Technical Report, AAE 90-8, UILU ENG 90-0508.

Yi, S., Ahmed, M. F., and Ramesh, A., 1996, “Data Parallel Computation for Thermo-Viscoelastic Analysis of Composite Structures,” Adv. Eng. Software, 27 , pp. 97–102.

[CrossRef]Zocher, M. A., 1995, “A Thermoviscoelastic Finite Element Formulation for the Analysis of Composites,” Ph.D. dissertation, Texas A & M University, College Station, TX.

Zocher, M. A., Groves, S. E., and Allen, D. H., 1997, “A Three-Dimensional Finite Element Formulation for Thermoviscoelastic Orthotropic Media,” Int. J. Numer. Methods Eng., 40 , pp. 2267–2288.

[CrossRef]Poon, H., and Ahmed, H. A., 1998, “A Material Point Time Integration Procedure for Anisotropic Thermorheologically Simple Viscoelastic Solids,” Comput. Mech., 21 , pp. 236–242.

[CrossRef]Park, S. W., and Kim, Y. R., 1998, “Analysis of Layered Viscoelastic System With Transient Temperatures,” J. Eng. Mech., 124 (2), pp. 223–231.

[CrossRef]Bonetti, E., and Bonfanti, G., 2003, “Existence and Uniqueness of the Solution to a 3D Thermoviscoelastic System,” Electron. J. Differ. Equations, 50 , pp. 1–15. Available at http://ejde.math.txstate.edu/Volumes/2003/50/bonetti.pdf

Chen, W. H., Chang, C. M., and Yeh, J. T., 1991, “Finite Element Analysis of Viscoelastic Contact Problems with Friction,” *The Fifteenth National Conference on Theoretical and Applied Mechanics*
, Tainan, Taiwan, R. O. C., pp. 713–720.

Chang, C. M., and Chen, W. H., 1996, “Thermoviscoelastic Contact Analysis With Friction by an Incremental Thermal Relaxation Procedure,” Comput. Methods Appl. Mech. Eng., 130 , pp. 151–162.

[CrossRef]Shillor, M., and Sofonea, M., 2000, “A Quasistatic Viscoelastic Contact Problem With Friction,” Int. J. Eng. Sci., 38 , pp. 1517–1533.

[CrossRef]Awbi, B., Rochdi, M., and Sofonea, M., 2000, “Abstract Evolution Equations for Viscoelastic Frictional Contact Problems,” J. Appl. Math. Phys., 51 , pp. 218–235.

[CrossRef]Han, W., and Sofonea, M., 2000, “Evolutionary Variational Inequalities Arising in Frictional Contact Problems,” SIAM J. Numer. Anal., 38 , pp. 556–579.

[CrossRef]Awbi, B., Chau, O., and Sofonea, M., 2002, “Variational Analysis of a Frictional Contact Problem for Viscoelastic Bodies,” Int. Math. J., 1 , pp. 333–348.

Campo, M., Fernandez, J. R., and Viano, J. M., 2006, “Numerical Analysis and Simulation of a Quasistatic Frictional Contact Problem With Damage in Viscoelasticity,” J. Comput. Appl. Math., 192 (1), pp. 30–39.

[CrossRef]Han, W., and Sofonea, M., 2002, “Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,” "*Studies in Advanced Mathematics*", AMS-IP, American Mathematical Society, International Press, Somerville, MA, Vol. 30 .

Batra, R. C., Levinson, M., and Betz, E., 1976, “Rubber Covered Rolls—The Thermoviscoelastic Problem, A Finite Element Solution,” Int. J. Numer. Methods Eng., 10 , pp. 767–785.

[CrossRef]Batra, R. C., 1977, “Cold Sheet Rolling—The Thermoviscoelastic Problem—A Numerical Solution,” Inter. J. Numer. Methods Eng., 11 , pp. 671–682.

[CrossRef]Copetti, M. I. M., and French, D. A., 2003, “Numerical Solution of a Thermoviscoelastic Contact Problem by a Penalty Method,” SIAM J. Numer. Anal., 41 (4), pp. 1487–1504.

[CrossRef]Copetti, M. I. M., 2004, “Numerical Approximation of a Thermoviscoelastic Problem to the Contact of Two Rods by a Penalty Method,” Numer.Methods Partial Differ. Equ., 20 , pp. 481–493.

[CrossRef]Copetti, M. I. M., 2005, “Error Analysis for a Finite Element Approximation of a Thermoviscoelastic Contact Problem,” J. Comput. Appl. Math., 180 , pp. 181–190.

[CrossRef]Andrews, K. T., Shillor, M., Wright, S., and Klarbring, A., 2002, “One-Dimensional Dynamic Thermoviscoelastic Contact With Damage,” J Math. Anal. Appl., 272 , pp. 249–275.

[CrossRef]Chau, O., and Awbi, B., 2004, “Quasistatic Thermoviscoelastic Frictional Contact Problem With Damped Response,” Appl Anal., 83 , pp. 635–648.

[CrossRef]Mahmoud, F. F., El-Shafei, A. G., and Attia, M. A., 2007, “An Incremental Adaptive Procedure for Viscoelastic Contact Problems,” ASME J. Tribol., 129 , pp. 305–313.

[CrossRef]Mahmoud, F. F., El-Shafei, A. G., Al-Shourbagy, A. E., and Abel-RahmanA. A., 2008, “A Numerical Solution for Quasistatic Viscoelastic Frictional Contact Problems,” ASME J. Tribol., 130 , pp. 1–13.

[CrossRef]Mahmoud, F. F., El-Shafei, A. G., and Attia, M. A., 2008, “A Quasistatic Analysis for Thermoviscoelastic Contact Problems,” J. Strain Anal. Eng., 43 , pp. 655–672.

[CrossRef]Mahmoud, F. F., El-Shafei, A. G., and Attia, M. A., 2011, “Analysis of Thermoviscoelastic Contact of Layered Bodies,” Finite Elem. Anal. Des., 47 , pp. 307–318.

[CrossRef]Williams, M. L., 1964, “Structural Analysis of Viscoelastic Materials,” AIAA J., 2 (5), pp. 785–808.

[CrossRef]William, M., Landel, R., and Ferry, J., 1955, “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids,” J. Am. Chem. Soc., 77 (14), pp. 3701–3707.

[CrossRef]Rabinowicz, E., 1995, "*Friction and Wear of Materials*", 2nd ed., John Wiley & Sons, New York.

Oden, J. T., and Pires, E. B., 1983, “Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity,” J. Appl. Mech., 50 , pp. 67–76.

[CrossRef]Oden, J. T., and Pires, E. B., 1984, “Algorithms and Numerical Results for Finite Element Approximations of Contact Problems With Non-Classical Friction Laws,” Comput. Struct., 19 (1–2), pp. 137–147.

[CrossRef]Schapery, R. A., 1974, “Viscoelastic Behavior and Analysis of Composite Materials,” "*Mechanics of Composite Materials*", G.P.Sendeckyj, ed., Academic, New York, Vol. 2 , pp. 85–168.

Kikuchi, N., and Oden, J. T., 1988, “Contact Problems in Elasticity – A Study of Variational Inequalities and Finite Element Methods,” "*Applied Mechanics and Numerical Mathematics*", SIAM Society for Industrial and Applied Mathematics, Philadelphia, Vol. 6 .

Wriggers, P., 2006, "*Computational Contact Mechanics*", 2nd ed., Springer-Verlag, Berlin, Heidelberg.

Mohamed, S. A., Helal, M. M., and Mahmoud, F. F., 2006, “An Incremental Convex Programming Model of the Elastic Frictional Contact Problems,” Struct. Eng. Mech., 23 (4), pp. 431–447.

Bathe, K. J., 1996, "*Finite Element Procedures*", Prentice-Hall, Upper Saddle River, New Jersey.

Ting, T. C. T., 1968, “Contact Problems in the Linear Theory of Viscoelasticity,” J. Appl. Mech., 35 (4), pp. 248–254.

[CrossRef]Naghieh, G. R., Jin, Z. M., and Rahnejat, H., 1999, “Characteristics of Frictionless Contact of Bonded Elastic and Viscoelastic Layered Solids,” Wear, 232 , pp. 243–249.

[CrossRef]Sokolinkoff, I. S., 1956, "*Mathematical Theory of Elasticity*", 2nd ed., McGraw-Hill, New York.