Cole, J. A., and Hughes, C. J., 1956, “Oil Flow and Film Extend in Complete Journal Bearings,” Proc. ImechE, 170, pp. 499–510.

[CrossRef]Pinkus, O., and Sternlicht, B., 1961, *Theory of Hydrodynamic Lubrication*, McGraw-Hill Book Co., New York.

Zeiden, F. Y., and Vance, J. M., 1990, “Cavitation Regimes in Squeeze Film Dampers and Their Effect on the Pressure Distribution,” Tribol. Trans., 33(3), pp. 447–453.

[CrossRef]Braun, M. J., and Hendricks, R. C., 1983, “An Experimental Investigation of the Vaporous/Gaseous Cavity Characteristics of an Eccentric Journal Bearing,” ASLE Trans., 27, pp. 1–14.

[CrossRef]Sun, D. C., Brewe, D. E., and Abel, P. B., 1993, “Simultaneous Pressure Measurement and High–Speed Photography Study of Cavitation in a Dynamically Loaded Journal Bearing,” ASME J. Tribol., 115, pp. 88–95.

[CrossRef]Diaz, S., and San Andrés, L. A., 2001, “A Model for Squeeze Film Dampers Operating With Air Entrainment and Validation With Experiments,” ASME J. Tribol., 123, pp. 125–133.

[CrossRef]Ku, C.-P., and Tichy, J., 1990, “An Experimental and Theoritical Study of Cavitation in a Finite Submerged Squeeze Film Damper,” ASME J. Tribol., 112, pp. 725–733.

[CrossRef]Braun, M. J., and Hannon, W. M., 2010, “Cavitation Formation and Modelling for Fluid Film Bearings: A Review,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 224, pp. 839–863.

[CrossRef]Zuber, N., and Dougherty, D. E., 1982, “The Field Equations for Two Phase Reynolds Film Flow With a Change of Phase,” ASLE Trans., 25(1), pp. 108–116.

[CrossRef]Chamniprasart, K., Al-Sharif, A., Rajagopal, K. R., and Szeri, A. Z., 1993, “Lubrication With Binary Mixtures: Bubbly Oil,” ASME J. Tribol., 115, pp. 253–260.

[CrossRef]Dowson, D., and Taylor, C. M., 1975, “Fundamental Aspects of Cavitation in Bearings,” *Cavitation and Related Phenomena In Lubrication*, Mechanical Engineering Publications for the Institute of Tribology, The University of Leeds, Leeds, UK, pp. 15–25.

Christopherson, D. G., 1941, “A New Mathematical Method for the Solution of Film Lubrication Problem,” Inst. Mech. Eng. Proc., 146, pp. 126–135.

[CrossRef]Jakobsson, B., and Floberg, L., 1957, *The Finite Journal Bearing Considering Vaporization*, Chalmers University of Technology, Gothenburg, Germany.

Elrod, H. G., and Adams, L., 1975, “A Computer Program for Cavitation and Starvation,” *Cavitation and Related Phenomena in Lubrication*, Mechanical Engineering Publications for the Institute of Tribology, The University of Leeds, Leeds, UK, pp. 37–41.

Vijayaraghavan, D., and Keith, T. G., Jr., 1990, “An Efficient, Robust and Time Accurate Numerical Scheme Applied to a Cavitation Algorithm,” ASME J. Tribol., 112, pp. 44–51.

[CrossRef]Brewe, D. E., 1986, “Theoritical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings,” ASME J. Tribol., 108, pp. 628–638.

[CrossRef]Hirayama, T., Sakurai, T., and Yabe, H., 2004, “A Theoretical Analysis Considering Cavitation Occurrence in Oil-Lubricated Spiral-Grooved Journal Bearings With Experimental Verification,” ASME J. Tribol., 126, pp. 490–498.

[CrossRef]Ikeuchy, K., and Mori, H., 1987, “The Effects of Cavity Fluctuation on the Elastic and Damping Properties of Journal Bearings,” Trans. Jpn. Soc. Mech. Eng. Ser. C, 53(485), pp. 136–143 (in Japanese).

[CrossRef]Bayada, G., Chambat, M., and El Alaoui, M., 1990, “Variational Formulations and Finite Element Algorithms for Cavitation Problems,” ASME, J. Tribol., 112, pp. 398–403.

[CrossRef]Kumar, A., and Booker, J. F., 1991, “A Finite Element Cavitation Algorithm,” ASME J. Trbiol., 113, pp. 276–286.

[CrossRef]Hajjam, M., and Bonneau, D., 2007, “A Transient Finite Element Cavitation Algorithm With Application to Radial Lip Seals,” Tribol. Int., 40, pp. 1258–1269.

[CrossRef]Etsion, L., and Ludwig, L. P., 1982, “Observation of Pressure Variation in the Cavitation Region of Submerged Journal Bearings,” ASME J. Lub. Technol., 104, pp. 157–163.

[CrossRef]Coyne, J. C., and Elrod, H. G., 1970,“Conditions for the Rupture of a Lubricating Film, Part 1: Theoretical Model,” Trans. ASME J. Lubr. Technol., 92, pp. 451–456.

[CrossRef]Coyne, J.C., and Elrod, H. G., 1971, “Conditions for the Rupture of a Lubricating Film, Part 2: New Boundary Conditions for Reynolds' Equation,” Trans. ASME, J. Lubr. Technol., 93, pp. 156–166.

[CrossRef]Sun, D. C., Wen, W., Zhiming, Z., Xiaoyang, C., and Meili, S., 2008, “Theory of Cavitation in an Oscillatory Oil Squeeze Film,” Tribol. Trans., 51, pp. 332–340.

[CrossRef]Geike, T., and Popov, V., 2009, “Cavitation Within the Framework of Reduced Description of Mixed Lubrication,” Tribol. Int., 42, pp. 93–98.

[CrossRef]Bodeo, S., and Booker, J. F.,1995, “Cavitation in Normal Separation of Square and Circular Plates,” ASME J. Tribol., 117(3), pp. 403–409.

[CrossRef]Groper, M., and Etsion, I., 2001, “The Effect of Shear Flow and Dissolved Gas Diffusion on the Cavitation in a Submerged Journal Bearing,” ASME J. Tribol., 123, pp. 494–500.

[CrossRef]Groper, M., and Etsion, I., 2002, “Reverse Flow as a Possible Mechanism for Cavitation Build-Up in a Submerged Journal Bearing,” ASME J. Tribol., 124, pp. 320–326.

[CrossRef]Pan, C. H. T., Kim, T. H., and Rencis, J. J., 2008, “Rolling Stream Trails: An Alternative Cavitation Analysis,” ASME J. Tribol., 130, p. 021703.

[CrossRef]Feng, N. S., and Hahn, E. J., 1985, “Density and Viscosity Models for Two-Phase Homogeneous Hydrodynamic Damper Fluids,” ASLE Trans., 29, pp. 361–369.

[CrossRef]Tao, L., Diaz, S., San Andrés, L. S., and Rajagopal, K. R., 2000, “Analysis of Squeeze Film Dampers Operating With Bubbly Lubricants,” ASME J. Tribol., 122, pp. 205–210.

[CrossRef]Diaz, S., and San Andrés, L., 2001, “A Model for Squeeze Film Dampers Operating With Air Entrainment and Validation With Experiments,” ASME J. Tribol., 123, pp. 125–133.

[CrossRef]Xing, C., Braun, M. J., and Li, H., 2009, “A Three Dimensional Navier–Stokes Based Numerical Model for Squeeze—Film Dampers. Part 1: Effects of Gaseous Cavitation on Pressure Distribution and Damping Coefficients Without Consideration of Inertia,” Tribol. Trans., 52, pp. 680–694.

[CrossRef]Xing, C., Braun, M. J., and Li, H., 2009, “A Three Dimensional Navier–Stokes Based Numerical Model for Squeeze—Film Dampers. Part 2: Effects of Gaseous Cavitation on the Squeeze Film Dampers,” Tribol. Trans., 52, pp. 695–705.

[CrossRef]Van Odyck, D. E. A., and Venner, C. H., 2003, “Compressible Stokes Flow in Thin Film,” ASME J. Tribol., 125, pp. 543–551.

[CrossRef]Yang, J., Zhou, L., and Wang, Z., 2011, “Numerical Simulation of Three-Dimensional Cavitation around a Hydrofoil,” ASME J. Fluids Eng., 133, 081301.

[CrossRef]Durany, J., Pereira, J., and Varas, F., 2010, “Dynamical Stability of Journal-Bearing Devices Through Numerical Simulation of Thermohydrodynamic Models,” Tribol. Int., 43, pp. 1703–1718.

[CrossRef]Bresh, D., and Desjardins, B., 2007, “On the Existence of Global Weak Solutions for a the Navier–Stokes Equations for Viscous Compressible and Heat Conducting Navier Stokes Models,” J. Math. Pures. Appl., 87(1), pp. 57–90.

[CrossRef]Bair, S., Khonsari,M., and Winer, W. O., 1998, “High Pressure Rheology of Lubricants and Limitations of the Reynolds Equation,” Tribol. Int., 31(10), pp. 573–586.

[CrossRef]Chupin, L., and Sart, R., 2012, “Compressible Flows: New Existence Results and Justification of the Reynolds Asymptotic in Thin Films,” Asymptotic Anal., 76(3–4), pp. 193–231.

Fantino, R., Frene, J., and Godet, M., 1972, “Reynolds Equation in Viscous Film Theory,” ASME J. Lubr. Technol., 94, pp. 287–288.

[CrossRef]Bodeo, S., 2003, “Flow Through Rough Microchannels: A Lubrication Perspective,” Proceedings of the First International Conference on Microchannels and Minichannels, Rochester, NY, Apr. 24–25.

Coutier-Delgosha, O., Reboud, J. L., and Delannoy, Y., 2003, “Numerical Simulation of the Unsteady Behavior of Cavitating Flows,” Int. J. Numer. Methods Fluids, 42(5), pp. 527–548.

[CrossRef]Pascarella, C., and Salvatore, V., 2001, “Numerical Study of Unsteady Cavitation on a Hydrofoil Section Using a Barotropic Model,” Proceedings of the 4th International Symposium on Cavitation, Los Angeles, CA.

Moreau, J. B., 2005, “Modelisation de L'ecoulement Polyphasique a L'interieur et en Sortie D'injecteurs Diesels,” Ph.D. thesis, Institut National Polytechnique de Toulouse, France.

Cristea, A. X., Bouyer, J., Fillon, M., and Pascovici, M. D., 2011, “Pressure and Temperature Fied Measurements of a Lightly Laded Circumferential Groove Journal Bearing,” Trib. Trans., 54, pp. 806–823.

[CrossRef]Van Wijngaarden, L., 1972, “One Dimensional Flow of Liquid Containing Small Gas Bubbles,” Ann. Rev. Fluid Mech., 4, pp. 369–396.

[CrossRef]McAdams, W. H., Wood, W. K., and Bryan, R. L., 1942, “Vaporization Inside Horizontal Tubes: Benzene-Oil Mixtures,” Trans. Am. Soc. Mech. Eng., 64, pp. 193–200.

Hayward, A. T. J., 1961, “The Viscosity of Bubbly Oil,” Fluids Report No. 99, National Engineering Laboratory, Glasgow, UK.

Wallis, G. B., 1969, *One Dimensional Two-Phase Flow*, McGraw-Hill, New York.

Kubota, A., Kato, H., and Yamaguchi, H., 1992, “A New Modeling of Cavitation Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil,” ASME J. Fluid Mech., 240, pp. 59–96.

[CrossRef]Migout, F., 2010, “Etude Théorique et Expérimentale du Changement de Phase Dans L'interface des Garnitures Mécaniques D’étanchéité,” Ph.D. thesis, Université de Poitiers, France.

Klaus, E. E. and O'Brien, J. A., 1964, “Precise Measurement and Prediction of Bulk Modulus values for Fluids and Lubricants,” ASME J. Basic Eng., 86(3), pp. 469–473.

[CrossRef]Sahlin, F., Almquist, A., Larsson, R., and Glavatskih, S., 2007, “A Cavitation Algorithm for Arbitrary Lubricant Compressibility,” Tribol. Int., 40, pp. 1294–1300.

[CrossRef]Dowson, D., and Higginson, G. R., 1966, Elasto Hydro-Dynamic Lubrication, Pergamon Press, Oxford, UK.

Dellanoy, Y., and Kueny, J. L., 1990, “Two Phase Flow Approach in Unsteady Cavitation Modeling,” *Cavitation and Multiphase Flow Forum*, Vol. 98, O.Furuya, ed., ASME, New York, pp. 153–158.

Hoeijmakers, H. W. M., Jansens, M. E., and Kwan, W., 1998, “Numerical Simulation of Sheet Cavitation,” Proceedings of the Third International Congress on Cavitation, Grenoble, France.

Sobahan, M., “Prediction of Tribological and Rheological Properties of Lubricating Oils by Sound Velocity,” Ph.D. Thesis, School of Science and Engineering, Saga University, Japan.

Ausas, R., Ragot, P., Leiva, J., Jai, M., Bayada, G., and Buscaglia, G. C., 2007, “The Impact of the Cavitation Model in the Analysis of a Microtextured Lubricated Journal Bearings,” ASME J. Tribol., 129(3), pp. 868–875.

[CrossRef]Etsion, I., and Pinkus, O., 1974, “Analysis of Short Journal Bearings With New Upstream Boundary Conditions,” ASME J. Lubr. Technol., 96, pp. 489–496.

[CrossRef]Etsion, I., and Pinkus, O., 1975, “Solutions of Finite Journal Bearings With Incomplete Films,” ASME J. Lubr. Technol., 97, pp. 89–93.

[CrossRef]Vincent, B., Maspeyrot, P., and Frêne, J., 1995, “Starvation and Cavitation Effects in Finite Journal Bearings,” *Lubricants and Lubrication: Proceedings of the 21th Leeds–Lyon Symposium on Tribology*, Vol. 30, D.Dowson, C.M.Taylor, T. H. C.Childs, and G.Dalmaz, eds., Elsevier Science Tribology Series, New York, pp. 455–464.

Liu, S., 2012, “On Boundary Conditions in Lubrication With One Dimensional Analytical Solutions,” Tribol. Int., 48, pp. 182–190.

[CrossRef]Ausas, R., Jai, M., and Buscaglia, G. C., 2009, “A Mass-Conserving Algorithm for Dynamical Lubrication Problems With Cavitation,” ASME J. Tribol., 131, p. 031702.

[CrossRef]