0
Research Papers: Lubricants

Modeling Polysiloxane Volume and Viscosity Variations With Molecular Structure and Thermodynamic State

[+] Author and Article Information
Thomas J. Zolper

Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: ThomasZolper2010@u.northwestern.edu

Manfred Jungk

Dow Corning GmbH,
Rheingaustr. 34,
Weisbaden 65201, Germany

Tobin J. Marks

Department of Chemistry,
Northwestern University,
Evanston, IL 60208

Yip-Wah Chung

Department of Mechanical Engineering,
Department of Materials Science
and Engineering,
Northwestern University,
Evanston, IL 60208

Qian Wang

Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received January 25, 2013; final manuscript received August 1, 2013; published online October 7, 2013. Assoc. Editor: Xiaolan Ai.

J. Tribol 136(1), 011801 (Oct 07, 2013) (12 pages) Paper No: TRIB-13-1029; doi: 10.1115/1.4025301 History: Received January 25, 2013; Revised August 01, 2013

Siloxane-based polymers (polysiloxanes) exhibit a range of volume, viscosity, and pressure-viscosity behaviors that are strongly influenced by the macromolecular structure. In this report, a combination of extant rheological models is applied to develop a molecular-rheological modeling formalism that predicts polysiloxane rheological properties, such as specific volume, which means density, viscosity, and pressure-viscosity index variations with macromolecular structure, pressure, and temperature. Polysiloxane molecular features are described in terms of alkyl branch length L, pendant type J, density of branch functional monomers Q, and degree of polymerization DP. Both new and published data are used for model parameter determination and validation. Several siloxane-based polymers with alkyl, aryl, alkyl-aryl, cycloalkyl, and halogenated branches were synthesized to examine the modeled relationship between their molecular structures and rheological behaviors.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Baker, E., Barry, A., and Hunter, M., 1946, “Dielectric Constants of Dimethyl Siloxane Polymers,” Ind. Eng. Chem., 38(11), pp. 1117–1120. [CrossRef]
Brophy, J. E., Militz, R. O., and Zisman, W. A., 1946, “Dimethyl-Silicone-Polymer Fluids and Their Performance Characteristics in Unilaterally Loaded Journal Bearings,” Trans. ASME, 68(4), pp. 355–360.
Hunter, M., Warrick, E., Hyde, J., and Currie, C., 1946, “Organosilicon Polymers. II. The Open Chain Dimethylsiloxanes With Trimethylsiloxy End Groups1,” J. Am. Chem. Soc., 68(11), pp. 2284–2290. [CrossRef]
Hurd, C., 1946, “Studies on Siloxanes. I. The Specific Volume and Viscosity in Relation to Temperature and Constitution,” J. Am. Chem. Soc., 68(3), pp. 364–370. [CrossRef]
Patnode, W., and Wilcock, D., 1946, “Methylpolysiloxanes1,” J. Am. Chem. Soc., 68(3), pp. 358–363. [CrossRef]
Sauer, R. O., and Mead, D. J., 1946, “Dipole Moments of Linear and Cyclic Polymethylpolysiloxanes,” J. Am. Chem. Soc., 68(9), pp. 1794–1797. [CrossRef]
Dickens, P., Sullivan, J., and Lancaster, J., 1986, “Speed Effects on the Dry and Lubricated Wear of Polymers,” Wear, 112(3–4), pp. 273–289. [CrossRef]
Wilcock, D., 1946, “Vapor Pressure-Viscosity Relations in Methylpolysiloxanes,” J. Am. Chem. Soc., 68(4), pp. 691–696. [CrossRef]
Fox, H., Taylor, P., and Zisman, W., 1947, “Polyorganosiloxanes. Surface Active Properties,” Ind. Eng. Chem., 39(11), pp. 1401–1409. [CrossRef]
Lewis, G., 1916, “The Atom and the Molecule,” J. Am. Chem. Soc., 38(4), pp. 762–785. [CrossRef]
Flory, P., 1969, Statistical Mechanics of Chain Molecules, Interscience, New York.
Brandup, J., Immergut, E., and Grulke, E., 1975, Polymer Handbook, Interscience, New York.
De Jaeger, R., and Gleria, M., 2007, Inorganic Polymers, Nova Science Pub Inc., New York.
Mackenzie, K., and Jemmett, A., 1971, “Polymer Shear Stability,” Wear, 17(5–6), pp. 389–398. [CrossRef]
Ziegler, M., and Fearon, F., 1990, Silicon-Based Polymer Science: A Comprehensive Resource (Advances in Chemistry Series, 224), American Chemical Society, Washington DC.
Rochow, E., 1987, Silicon and Silicones, Springer Berlin.
Zolper, T. J., Li, Z., Chen, C., Jungk, M., Marks, T. J., Chung, Y.-W., and Wang, Q., 2012, “Lubrication Properties of Poly-alpha-olefin and Polysiloxane Lubricants: Molecular Structure-Tribology Relationships,” Tribol. Lett., 48, pp. 355–365.
Zolper, T. J., Li, Z., Jungk, M., Stammer, A., Stoegbauer, H., Marks, T. J., Chung, Y.-W., and Wang, Q., 2013, “Traction Characteristics of Siloxanes With Aryl and Cyclohexyl Branches,” Tribol. Lett., 49(2), pp. 301–311. [CrossRef]
Zolper, T. J., Seyam, A. M., Chen, C., Jungk, M., Stammer, A., Stoegbauer, H., Marks, T. J., Chung, Y.-W., and Wang, Q., 2013, “Energy Efficient Siloxane Lubricants Utilizing Temporary Shear-Thinning,” Tribol. Lett., 49(3), pp. 525–538. [CrossRef]
Zolper, T. J., Seyam, A., Li, Z., Chen, C., Jungk, M., Stammer, A., Marks, T. J., Chung, Y.-W., and Wang, Q., 2013, “Friction and Wear Protection Performance of Synthetic Siloxane Lubricants,” Tribol. Lett., 51, pp. 365–376. [CrossRef]
Jakobsen, J., Sanborn, D., and Winer, W., 1974, “Pressure Viscosity Characteristics of a Series of Siloxane Fluids,” ASME J. Lub. Technol., 96(3), pp. 410–417. [CrossRef]
Kuss, E., 1974, “Viskositats-Druckverhalten von flussigen Methyl-Phenylmethyl- und Cyclohexylmethyl-Siloxeanen,” Erdol und Kohle-Erdgas-Petrochemie vereinigt mit Brennstoff-Chemie, 27(8), pp. 416–422.
ASME, 1953, Viscosity and Density of Over 40 Lubricating Fluids of Known Composition at Pressures to 150,000 psi and Temperatures to 425 F, Vol. 1, American Society of Mechanical Engineers, New York.
Winer, W. O., 1977, A Study of the Elastohydrodynamic Lubrication and High Pressure Rheological Behavior of a Series of Silicone Fluids, Georgia Tech, Atlanta, GA.
Bridgman, P., 1949, “Viscosities to 30,000 Kg/Cm,” Proc. Am. Aca. Arts Sci., 77(4), pp. 117–128.
Bondi, A., 1964, “van der Waals Volumes and Radii,” J. Phys. Chem., 68(3), pp. 441–451. [CrossRef]
Bondi, A., 1968, Physical Properties of Molecular Crystals, Liquids, and Glasses, Wiley, New York.
Slonimskii, G., Askadskii, A., and Kitaigorodskii, A., 1970, “The Packing of Polymer Molecules,” Polym. Sci. USSR, 12(3), pp. 556–577. [CrossRef]
Van Krevelen, D. W., 1990, Properties of Polymers. Their Correlation with Chemical Structure, Their Numerical Estimation and Prediction From Additive Group Contribution, 3rd ed., Elsevier, New York.
Zhao, Y., Abraham, M., and Zissimos, A., 2003, “Fast Calculation of van der Waals Volume as a Sum of Atomic and Bond Contributions and Its Application to Drug Compounds,” J. Org. Chem., 68(19), pp. 7368–7373. [CrossRef] [PubMed]
Schaffer, J. P., Saxena, A., Antolovich, S. D., Sanders, T., and Warner, S. B., 1995, The Science and Design of Engineering Materials, Irwin, Toronto.
Callister, W. D., and Rethwisch, D. G., 2011, Fundamentals of Materials Science and Engineering: An Integrated Approach, Wiley, New York.
Lee, W., 1980, “Selection of Barrier Materials From Molecular Structure,” Polym. Eng. Sci., 20(1), pp. 65–69. [CrossRef]
Mathews, A., 1916, “Physiological Chemistry,” William Wood and Company, New York,
Sugden, S.1927, “Molecular Volumes at Absolute Zero II. Zero Volumes and Chemical Composition,” J. Chem. Soc., 2, pp. 1786–1798. [CrossRef]
Biltz, W., Rohlffs, G., and Vogel, H., 1934, “Beiträge zur systematischen Verwandtschaftslehre. 61. Bau und Verwendung eines Hochtemperaturkalorimeters mit geschlossenem Reaktionsraum,” Z. anorg. allg. Chem, 220, pp. 113–141. [CrossRef]
Asano, T., 1973, “Void and Expansion Volume Contributions to Reaction and Activation Volumes of Nearly Nonpolar Reactions,” Rev. Phys. Chem. Jap., 43(2), pp. 82–91.
Flory, P., 1940, “Viscosities of Linear Polyesters. An Exact Relationship Between Viscosity and Chain Length,” J. Am. Chem. Soc., 62(5), pp. 1057–1070. [CrossRef]
Berry, G., and Fox, T., 1968, “The Viscosity of Polymers and Their Concentrated Solutions,” Adv. Polymer Sci., 5, pp. 261–357. [CrossRef]
Lee, M. K., and Meier, D. J., 1994, “Synthesis and Properties of Diarylsiloxane and (Aryl/methyl) Siloxane Polymers: 2. Solution and Rheological Properties,” Polymer, 35(15), pp. 3282–3284. [CrossRef]
Mandík, L., Foksová, A., and Foltyn, J., 1979, “Gel Permeation Chromatography of Poly (Dimethyl Siloxane). I. The Universal Calibration,” J. Appl. Polym. Sci., 24(2), pp. 395–404. [CrossRef]
Van Krevelen, D., and Hoftyzer, P., 1976, “Newtonian Shear Viscosity of Polymeric Melts,” Die Angewandte Makromolekulare Chemie, 52(1), pp. 101–109. [CrossRef]
Orrah, D., Semlyen, J., and Ross-Murphy, S., 1988, “Studies of Cyclic and Linear Poly (Dimethylsiloxanes): 27. Bulk Viscosities Above the Critical Molar Mass for Entanglement,” Polymer, 29(8), pp. 1452–1454. [CrossRef]
Orrah, D., Semlyen, J., and Ross-Murphy, S., 1988, “Studies of Cyclic and Linear Poly (Dimethylsiloxanes): 28. Viscosities and Densities of Ring and Chain Poly (Dimethylsiloxane) Blends,” Polymer, 29(8), pp. 1455–1458. [CrossRef]
Fox, T., and Allen, V., 1964, “Dependence of the Zero Shear Melt Viscosity and the Related Friction Coefficient and Critical Chain Length on Measurable Characteristics of Chain Polymers,” J. Chem. Phys., 41, pp. 344–352. [CrossRef]
Schaefgen, J., and Flory, P., 1948, “Synthesis of Multichain Polymers and Investigation of their Viscosities 1,” J. Am. Chem. Soc., 70(8), pp. 2709–2718. [CrossRef]
Fox, T., 1962, “Properties of Dilute Polymer Solutions III: Intrinsic Viscosity/Temperature Relationships for Conventional Polymethyl Methacrylate,” Polymer, 3, pp. 111–128. [CrossRef]
Ferry, J., 1980, Viscoelastic Properties of Polymers, John Wiley & Sons Inc., New York.
Arrighi, V., Gagliardi, S., Dagger, A., Semlyen, J., Higgins, J., and Shenton, M., 2004, “Conformation of Cyclics and Linear Chain Polymers in Bulk by SANS,” Macromolecules, 37(21), pp. 8057–8065. [CrossRef]
Dvornic, P., Jovanovic, J., and Govedarica, M., 1993, “On the Critical Molecular Chain Length of Polydimethylsiloxane,” J. Appl. Polym. Sci., 49(9), pp. 1497–1507. [CrossRef]
Beltzung, M., Picot, C., Rempp, P., and Herz, J., 1982, “Investigation of the Conformation of Elastic Chains in Poly (Dimethylsiloxane) Networks by Small-Angle Neutron Scattering,” Macromolecules, 15(6), pp. 1594–1600. [CrossRef]
Edwards, C., Rigby, D., Stepto, R., Dodgson, K., and Semlyen, J., 1983, “Studies of Cyclic and Linear Poly (Dimethyl Siloxanes): 10. Calculations of Radii of Gyration,” Polymer, 24(4), pp. 391–394. [CrossRef]
Fetters, L., Lohse, D., Richter, D., Witten, T., and Zirkel, A., 1994, “Connection Between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties,” Macromolecules, 27(17), pp. 4639–4647. [CrossRef]
Zhou, Z., and Yan, D., 1997, “Mean-Square Radius of Gyration of Polymer Chains,” Macromol. Theory Sim., 6(3), pp. 597–611. [CrossRef]
Zang, Y., and Carreau, P., 1991, “A Correlation Between Critical End to End Distance for Entanglements and Molecular Chain Diameter of Polymers,” J. Appl. Polym. Sci., 42(7), pp. 1965–1968. [CrossRef]
Patel, A., Cosgrove, T., and Semlyen, J., 1991, “Studies of Cyclic and Linear Poly (Dimethylsiloxanes): 30. Adsorption Studies on Silica in Solution,” Polymer, 32(7), pp. 1313–1317. [CrossRef]
McGuiggan, P., Gee, M., Yoshizawa, H.Hirz, S. and Israelachvili, J., 2007, “Friction Studies of Polymer Lubricated Surfaces,” Macromolecules, 40(6), pp. 2126–2133. [CrossRef]
Zilliox, J., Roovers, J., and Bywater, S., 1975, “Preparation and Properties of Polydimethylsiloxane and Its Block Copolymers With Styrene,” Macromolecules, 8(5), pp. 573–578. [CrossRef]
Villegas, J., Olayo, R., and Cervantes, J., 2003, “Effect of Side Groups on the Conformation of a Series of Polysiloxanes in Solution,” J. Inorganic Organometal. Polym., 13(4), pp. 205–222. [CrossRef]
Büyüktanir, E. A., and Küçükyavuz, Z., 2000, “Solution Properties of Poly (Dimethyl siloxane),” J. Polym. Sci. B Polym. Phys., 38(20), pp. 2678–2686. [CrossRef]
Evmenenko, G., Dugan, S., Kmetko, J., and Dutta, P., 2001, “Molecular Ordering in Thin Liquid Films of Polydimethylsiloxanes,” Langmuir, 17(13), pp. 4021–4024. [CrossRef]
Buch, R. R., Klimisch, H. M., and Johannson, O., 1969, “Light Scattering and Intrinsic Viscosity Investigation of Polymethyl - 3, 3, 3 - Trifluoropropylsiloxamer,” J. Polym. Sci. A Polym. Phys., 7(3), pp. 563–574. [CrossRef]
Buch, R. R., Klimisch, H. M., and Johannson, O., 1970, “Dilute Solution Parameters of Polymethylphenylsiloxamers,” J. Polym. Sci. A Polym. Phys., 8(4), pp. 541–554. [CrossRef]
Crescenzi, V., and Flory, P., 1964, “Configuration of the Poly-(Dimethylsiloxane) Chain. II. Unperturbed Dimensions and Specific Solvent Effects,” J. Am. Chem. Soc., 86(2), pp. 141–146. [CrossRef]
Ma, H., Sun, T., and Ye, G., 2008, “Mean-Square Radius of Gyration and Dipole Moment of Poly (Methylphenylsiloxane) Chains,” Chin. J. Polym. Sci., 26(6), pp. 741–749. [CrossRef]
Granick, S., and Hu, H. W., 1994, “Nanorheology of Confined Polymer Melts. 1. Linear Shear Response at Strongly Adsorbing Surfaces,” Langmuir, 10(10), pp. 3857–3866. [CrossRef]
Clarson, S., Dodgson, K., and Semlyen, J., 1987, “Cyclic Polysiloxanes: 2. Neutron Scattering From Poly (Phenylmethylsiloxane),” Polymer, 28(2), pp. 189–192. [CrossRef]
Rim, P. B., Rasoul, H. A. A., Hurley, S. M., Orler, E. B., and Scholsky, K. M., 1987, “Rheological and Thermal Properties of Poly (Methylalkylsiloxane),” Macromolecules, 20(1), pp. 208–211. [CrossRef]
Huglin, M. B., 1972, Light Scattering From Polymer Solutions, Vol. 27, Academic Press, New York.
Bonchev, D., Markel, E., and Dekmezian, A., 2002, “Long Chain Branch Polymer Chain Dimensions: Application of Topology to the Zimm–Stockmayer model* 1,” Polymer, 43(1), pp. 203–222. [CrossRef]
Wiener, H., 1947, “Structural Determination of Paraffin Boiling Points,” J. Am. Chem. Soc., 69(1), pp. 17–20. [CrossRef] [PubMed]
Zimm, B., and Stockmayer, W., 1949, “The Dimensions of Chain Molecules Containing Branches and Rings,” J. Chem. Phys., 17, pp. 1301–1314. [CrossRef]
Tait, P., 1888, “Physics and Chemistry of the Voyage of HMS Challenger,” Cambridge University Press, Cambridge, UK.
Dymond, J., and Malhotra, R., 1988, “The Tait Equation: 100 Years on,” Int. J. Thermophys., 9(6), pp. 941–951. [CrossRef]
Habchi, W., Eyheramendy, D., Bair, S., Vergne, P., and Morales-Espejel, G., 2008, “Thermal Elastohydrodynamic Lubrication of Point Contacts Using a Newtonian/Generalized Newtonian Lubricant,” Tribol. Lett., 30(1), pp. 41–52. [CrossRef]
Dlubek, G. N., De, U., Pionteck, J. R., Arutyunov, N. Y., Edelmann, M., and Krause-Rehberg, R., 2005, “Temperature Dependence of Free Volume in Pure and Silica-Filled Poly(Dimethyl Siloxane) From Positron Lifetime and PVT Experiments,” Macromol. Chem. Phys., 206(8), pp. 827–840. [CrossRef]
Prigogine, I., Trappeniers, N., and Mathot, V., 1953, “Statistical Thermodynamics of r-mers and r-mer Solutions,” Discuss. Faraday Soc., 15, pp. 93–107. [CrossRef]
Prigogine, I., Bellemans, A., and Mathot, V., 1957, The Molecular Theory of Solutions, North-Holland, Amsterdam,
Flory, P., Orwoll, R., and Vrij, A., 1964, “Statistical Thermodynamics of Chain Molecule Liquids. I. An Equation of State for Normal Paraffin Hydrocarbons,” J. Am. Chem. Soc., 86(17), pp. 3507–3514. [CrossRef]
Dee, G., Ougizawa, T., and Walsh, D., 1992, “The Pressure-Volume-Temperature Properties of Polyethylene, Poly (Dimethyl Siloxane), Poly (Ethylene Glycol) and Poly (Propylene Glycol) as a Function of Molecular Weight,” Polymer, 33(16), pp. 3462–3469. [CrossRef]
Sanchez, I., and Lacombe, R., 1976, “An Elementary Molecular Theory of Classical Fluids. Pure Fluids,” J. Phys. Chem., 80(21), pp. 2352–2362. [CrossRef]
Sanchez, I., and Lacombe, R., 1977, “An Elementary Equation of State for Polymer Liquids,” J. Polym. Sci. Polym. Lett., 15(2), pp. 71–75 [CrossRef].
Chiew, Y., Ting, S., and Leong, K., 2000, “A Perturbed Lennard–Jones Chain Equation of State for Polymer Liquids,” Fluid Phase Equilibria, 168(1), pp. 19–29. [CrossRef]
Simha, R., and Somcynsky, T., 1969, “On the Statistical Thermodynamics of Spherical and Chain Molecule Fluids,” Macromolecules, 2(4), pp. 342–350. [CrossRef]
Simha, R., Wilson, P., and Olabisi, O., 1973, “Pressure-Volume-Temperature Properties of Amorphous Polymers: Empirical and Theoretical Predictions,” Colloid Polym. Sci., 251(6), pp. 402–408.
Beret, S., and Prausnitz, J., 1975, “Densities of Liquid Polymers at High Pressure. Pressure-Volume-Temperature Measurements for Polyethylene, Polyisobutylene, Poly (Vinyl Acetate), and Poly (Dimethylsiloxane) to 1 kbar,” Macromolecules, 8(4), pp. 536–538. [CrossRef]
Dee, G., and Walsh, D., 1988, “Equations of State for Polymer Liquids,” Macromolecules, 21(3), pp. 811–815. [CrossRef]
Fakhreddine, Y., and Zoller, P., 1990, “The Equation of State of a Polydimethylsiloxane Fluid,” J. Appl. Polym. Sci., 41(5–6), pp. 1087–1093. [CrossRef]
Sachdev, V., Yahsi, U., and Jain, R., 1998, “Equation of State of Poly (Dimethylsiloxane) Melts,” J. Polym. Sci. B Polym. Phys., 36(5), pp. 841–850. [CrossRef]
Rodgers, P., 1993, “Pressure–Volume–Temperature Relationships for Polymeric Liquids: A Review of Equations of State and Their Characteristic Parameters for 56 Polymers,” J. Appl. Polym. Sci., 48(6), pp. 1061–1080. [CrossRef]
Sedlacek, T., Zatloukal, M., Filip, P., Boldizar, A., and Saha, P., 2004, “On the Effect of Pressure on the Shear and Elongational Viscosities of Polymer Melts,” Polym. Eng. Sci., 44(7), pp. 1328–1337. [CrossRef]
Utracki, L., and Simha, R., 2001, “Analytical Representation of Solutions to Lattice-Hole Theory,” Macromol. Theory Sim., 10(1), pp. 17–24. [CrossRef]
Bridgman, P., 1949, “Further Rough Compressions to 40,000 Kg/Cm, Especially Certain Liquids,” Proceedings of the American Academy of Arts and Sciences, 77, pp. 129–146.
Vogel, H., 1921, “Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten,” Phys. Z, 22, pp. 645–646.
Andrade, E., 1930, “The Viscosity of Liquids,” Nature, 125(3148), pp. 309–310. [CrossRef]
Glasstone, S., Laidler, K., and Eyring, H., 1941, The Theory of Rate Process, Mc Graw-Hill, New York,
Eyring, H., Henderson, D., Stover, B., and Eyring, E., 1964, Statistical Mechanics and Dynamics, John Wiley & Sons, New York.
LaFountain, A. R., Johnston, G. J., and Spikes, H. A., 2001, “The Elastohydrodynamic Traction of Synthetic Base Oil Blends,” Tribol. Trans., 44(4), pp. 648–656. [CrossRef]
Ferguson, J., Wright, B., and Haward, R., 1964, “The Flow Properties of Polyethylene Whole Polymers and Fractions,” J. Appl. Chem., 14(2), pp. 53–63. [CrossRef]
Marshall, D. I., 1956, “Effects of Branching on the Temperature Coefficient of Viscosity of Ethylene Polymers,” 130 National Meeting ACS, Atlantic City, NJ.
Williams, M., Landel, R., and Ferry, J., 1955, “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids,” J. Am. Chem. Soc., 77(14), pp. 3701–3707. [CrossRef]
Doolittle, A., 1951, “Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free Space,” J. Appl. Phys., 22(12), pp. 1471–1475. [CrossRef]
Bair, S., 2001, “The High-Pressure, High-Shear Stress Rheology of a Polybutene,” J. Non-Newton. Fluid Mech., 97(1), pp. 53–65. [CrossRef]
Bair, S., and Winer, W., 2007, “A Quantitative Test of the Einstein–Debye Relation for Low Molecular Weight Liquids Using the Shear Dependence of Viscosity,” Tribol. Lett., 26(3), pp. 223–228. [CrossRef]
Bair, S., and Qureshi, F., 2002, “Accurate Measurements of Pressure-Viscosity Behavior in Lubricants,” Tribol. Trans., 45(3), pp. 390–396. [CrossRef]
Bair, S., and Kottke, P., 2003, “Pressure-Viscosity Relationships for Elastohydrodynamics,” Tribol. Trans., 46(3), pp. 289–295. [CrossRef]
Bair, S., Liu, Y., and Wang, Q. J., 2006, “The Pressure-Viscosity Coefficient for Newtonian EHL Film Thickness With General Piezoviscous Response,” ASME J. Tribol., 128(3), pp. 624–631. [CrossRef]
Liu, Y., Wang, Q., Krupka, I., Hartl, M., and Bair, S., 2008, “The Shear-Thinning Elastohydrodynamic Film Thickness of a Two-Component Mixture,” ASME J. Tribol., 130(2), p. 021502. [CrossRef]
Bair, S., 1998, “Elastohydrodynamic Film Forming With Shear Thinning Liquids,” ASME J. Tribol., 120, pp. 173–178. [CrossRef]
Bair, S., 2006, “Reference Liquids for Quantitative Elastohydrodynamics: Selection and Rheological Characterization,” Tribol. Lett., 22(2), pp. 197–206. [CrossRef]
Bair, S., Roland, C., and Casalini, R., 2007, “Fragility and the Dynamic Crossover in Lubricants,” Proc. IMechE J: J. Eng. Tribol., 221(7), pp. 801–811. [CrossRef]
Bair, S., and Casalini, R., 2008, “A Scaling Parameter and Function for the Accurate Correlation of Viscosity With Temperature and Pressure Across Eight Orders of Magnitude of Viscosity,” ASME J. Tribol., 130, p. 041802. [CrossRef]
Habchi, W., Eyheramendy, D., Vergne, P., and Morales-Espejel, G., 2012, “Stabilized Fully-Coupled Finite Elements for Elastohydrodynamic Lubrication Problems,” Adv. Eng. Software, 46(1), pp. 4–18. [CrossRef]
Johnston, W., 1981, “A Method to Calculate the Pressure-Viscosity Coefficient From Bulk Properties of Lubricants,” Tribol. Trans., 24(2), pp. 232–238.
So, B., and Klaus, E., 1980, “Viscosity-Pressure Correlation of Liquids,” Tribol. Trans., 23(4), pp. 409–421.
Wu, C., Klaus, E., and Duda, J., 1989, “Development of a Method for the Prediction of Pressure-Viscosity Coefficients of Lubricating Oils Based on Free-Volume Theory,” ASME J. Tribol., 111(1), pp. 121–128. [CrossRef]
Foord, C., Hammann, W., and Cameron, A., 1968, “Evaluation of Lubricants Using Optical Elastohydrodynamics,” Tribol. Trans., 11(1), pp. 31–43.
Johnston, G., Wayte, R., and Spikes, H., 1991, “The Measurement and Study of Very Thin Lubricant Films in Concentrated Contacts,” Tribol. Trans., 34(2), pp. 187–194. [CrossRef]
Aderin, M., Johnston, G., Spikes, H., and Caporiccio, G., 1992, “The Elastohydrodynamic Properties of Some Advanced Non Hydrocarbon-Based Lubricants,” Lub. Eng., 48(8), pp. 633–638.
Gunsel, S., Korcek, S., Smeeth, M., and Spikes, H., 1999, “The Elastohydrodynamic Friction and Film Forming Properties of Lubricant Base Oils,” Tribol. Trans., 42(3), pp. 559–569. [CrossRef]
Yokoyama, F., and Spikes, H., 2000, “Film-Forming Properties of Polyol Esters, Polyphenyl Ethers and Their Mixtures Over a Wide Range of Temperature,” Tribol. Trans., 43(1), pp. 130–136. [CrossRef]
Guangteng, G., and Spikes, H., 1996, “Boundary Film Formation by Lubricant Base Fluids,” Tribol. Trans., 39(2), pp. 448–454. [CrossRef]
Jones, W. R., Johnson, R. L., Winer, W. O., and Sanborn, D. M., 1975, “Pressure-Viscosity Measurements for Several Lubricants to 5.5 × 108 Newtons per Square Meter (8 × 104 psi) and 149 °C (300°F),” Tribol. Trans., 18(4), pp. 249–262.
Bair, S., and Qureshi, F., 2003, “The High Pressure Rheology of Polymer-Oil Solutions,” Tribol. Int., 36(8), pp. 637–645. [CrossRef]
Bair, S. S., 2007, High-Pressure Rheology for Quantitative Elastohydrodynamics, Vol. 54, Elsevier Science, Oxford, UK.
Blok, H., 1964, “Inverse Hydrodynamics,” Proceedings of the International Symposium on Lubrication and Wear, McCutchan Publ. Corp., Berkeley, CA, pp. 1–151.
Roelands, C. J. A., 1966, “Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils,” Ph.D. thesis, Technical University Delft, Delft, The Netherlands ( V. R. B., Groningen, The Netherlands).
Hamrock, B., and Dowson, D., 1976, “Isothermal Elastohydrodynamic Lubrication of Point Contacts. I—Theoretical Formulation,” ASME J. Lubr. Technol., 98(2), pp. 223–228. [CrossRef]
Hamrock, B., and Dowson, D., 1976, “Isothermal Elastohydrodynamic Lubrication of Point Contacts. II—Ellipticity Parameter Results,” ASME J. Lubr. Technol., 98(3), pp. 375–381. [CrossRef]
Hamrock, B., and Dowson, D., 1977, “Isothermal Elastohydrodynamic Lubrication of Point Contacts. III—Fully Flooded Results,” ASME J. Lubr. Technol., 99(2), pp. 264–275. [CrossRef]
Bair, S., and Qureshi, F., 2003, “The Generalized Newtonian Fluid Model and Elastohydrodynamic Film Thickness,” ASME J. Tribol., 125(1), pp. 70–75. [CrossRef]
Kumar, P., Bair, S., Krupka, I., and Hartl, M., 2010, “Newtonian Quantitative Elastohydrodynamic Film Thickness With Linear Piezoviscosity,” Tribol. Int., 43(11), pp. 2159–2165. [CrossRef]
Mills, N., 1969, “The Rheological Properties and Molecular Weight Distribution of Polydimethylsiloxane,” Eur. Polym. J., 5(5), pp. 675–695. [CrossRef]
Rahalkar, R., Lamb, J., Harrison, G., Barlow, A., Hawthorne, W., and Semlyen, J., North, A., and Pethrick, R., 1983, “Viscoelastic Studies of Reptational Motion of Linear Polydimethylsiloxanes,” Faraday Symposium, Chem. Soc, 18, pp. 103–114. [CrossRef]
Kissi, N., Piau, J., Attané, P., and Turrel, G., 1993, “Shear Rheometry of Polydimethylsiloxanes. Master Curves and Testing of Gleissle and Yamamoto Relations,” Rheolog. Acta, 32(3), pp. 293–310. [CrossRef]
Barry, A. J., 1946, “Viscometric Investigation of Dimethylsiloxane Polymers,” J. Appl. Phys., 17(12), pp. 1020–1024. [CrossRef]
Lee, C., Polmanteer, K., and King, E., 1970, “Flow Behavior of Narrow-Distribution Polydimethylsiloxane,” J. Polym. Sci. A Polym. Phys., 8(11), pp. 1909–1916. [CrossRef]
Debye, P. J. W., 1929, Polar Molecules, Dover, New York.
Hu, H., Carson, G., and Granick, S., 1991, “Relaxation Time of Confined Liquids Under Shear,” Phys. Rev. Lett., 66(21), pp. 2758–2761. [CrossRef] [PubMed]
Macosko, C., 1994, Rheology: Principles, Measurements, and Applications, Wiley-VCH, Poughkeepsie, NY.
Strohriegl, P., 1986, “Polymers With Pendant Carbazole Groups, 1. Synthesis and Characterization of Some Novel Polysiloxanes,” Die Makromolekulare Chemie, Rapid Commun., 7(12), pp. 771–775. [CrossRef]
Bahar, I., Zuniga, I., Dodge, R., and Mattice, W., 1991, “Conformational Statistics of Poly (Dimethylsiloxane). 1. Probability Distribution of Rotational Isomers From Molecular Dynamics Simulations,” Macromolecules, 24(10), pp. 2986–2992. [CrossRef]
Höglund, E., 1999, “Influence of Lubricant Properties on Elastohydrodynamic Lubrication,” Wear, 232(2), pp. 176–184. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

General molecular structure of siloxanes depicting branch content (Q), alkyl length (L), pendant group (J), and degree of polymerization (DP)

Grahic Jump Location
Fig. 2

Siloxane molecular-rheological model

Grahic Jump Location
Fig. 3

Measured (symbols) and calculated (lines) van der Waals volume and specific volume versus branch content for PDMS (D-D) and n-dodecyl branched PAMS as functions of molecular structure at atmospheric pressure and 298 K for atomic lengths of Zn = 100

Grahic Jump Location
Fig. 4

Ratio of radii of gyration versus macromolecule length for n-octyl branched polysiloxane copolymers at 298 K

Grahic Jump Location
Fig. 5

Measured (symbols) and calculated (lines) viscosity versus molecular length of PDMS (triangles) and dodecyl branched PAMS copolymers (squares) at 298 K

Grahic Jump Location
Fig. 6

Measured (symbols) and calculated (lines) reduced volume versus pressure of PDMS (D-D) based on data of (blue) ASME [23], (green) Winer [24], and (black) Bridgman [93] at 298, 372, and 491 K

Grahic Jump Location
Fig. 7

Measured (symbols) and calculated (lines) reduced viscosity versus pressure of PDMS (D-D) based on data of (blue) ASME [23] and (green) Winer [24] at 298, 372, and 491 K

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In