Zhang, X. L., 2002, *Dynamic Characteristics and Applications of Machine Joint Surfaces*, Press of Science and Technology of China, Beijing (in Chinese).

Dai, D. P., 1986, *The Damping Technology for Vibration and Noise Control*, Xi'an Jiao Tong University Press, Xi'an (in Chinese).

Murty, A. S. R., and Padmanabhan, K. K., 1982, “Effect of Surface Topography on Damping in Machine Joints,” Precis. Eng., 4(4), pp. 185–190.

[CrossRef]Padmanabhan, K. K., and Murty, A. S. R., 1991, “Damping in Structural Joints Subjected to Tangential Loads,” Proc. Inst. Mech. Eng., 205, pp. 121–129.

[CrossRef]Padmanabhan, K. K., 1992, “Prediction of Damping in Machine Joints,” Int. J. Mach. Tools Manufact., 32(3), pp. 305–314.

[CrossRef]Zhang, X. L., Wen, S. H., Lan, G. S., Ding, H. Q., Zhang, Z. Y., Wang, X. W., and Liu, Z. H., 2011, “Fractal Model for Tangential Contact Damping of Plane Joint Interfaces With Simulation,” J. Xi'an Jiao Tong Univ., 45(5), pp. 74–77 (in Chinese).

Johnson, K. L., 1985, *Contact Mechanics*, Cambridge University Press, Cambridge, UK.

Yamada, A., Kakubari, T., Ebata, H., and Furukawa, M., 1983, “Dynamic Characteristics of Structures With Joint,” Trans. Jpn. Soc. Mech. Eng., C49(438), pp. 182–190 (in Japanese).

Bograd, S., Schmidt, A., and Gaul, L., 2008, “Joint Damping Prediction by Thin Layer Elements,” Proceedings of the IMAC 26th Society of Experimental Mechanics Inc. Bethel, CT.

Medina, S., Olver, A. V., and Dini, D., 2012, “The Influence of Surface Topography on Energy Dissipation and Compliance in Tangentially Loaded Elastic Contacts,” ASME J. Tribol., 134(1), pp. 1–12.

[CrossRef]Greenwood, J. A., and Williamson, J. B. P., 1966, “Contact of Nominally Flat Surface,” Proc. R. Soc., London, Ser. A, 295, pp. 300–319.

[CrossRef]Chang, W. R., Etsion, I., and Bogy, D. B., 1987, “An Elastic-Plastic Model for the Contact of Rough Surfaces,” ASME J. Tribol., 109, pp. 257–263.

[CrossRef]Cattaneo, C., 1938, “Sul Contatto di due Corpi Elastici: Distribuzion Locale Degli Sforzi, Part I,” Rend., 6 Ser., Accad. Lincei, Rome., 27, pp. 342–348.

Cattaneo, C., 1938, “Sul Contatto di due Corpi Elastici: Distribuzion Locale Degli Sforzi, Part II,” Rend., 6 Ser., Accad. Lincei, Rome., 27, pp. 434–436.

Cattaneo, C., 1938, “Sul Contatto di due Corpi Elastici: Distribuzion Locale Degli Sforzi, Part III,” Rend., 6 Ser., Accad. Lincei, Rome., 27, pp. 474–478.

Mindlin, R. D., 1949, “Compliance of Elastic Bodies in Contact,” ASME J. Appl. Mech., 16, pp. 259–268.

[CrossRef]Nowell, D., Hills, D. A., and Sackfield, A., 1988, “Contact of Dissimilar Elastic Cylinders Under Normal and Tangential Loading,” J. Mech. Phys. Solids., 36(1), pp. 59–75.

[CrossRef]Björklund, S., and Andersson, S., 1994, “A Numerical Method for Real Elastic Contacts Subjected to Normal and Tangential Loading,” Wear, 179, pp. 117–122.

[CrossRef]Chen, W. W., and Wang, Q. J., 2008, “A Numerical Model for the Point Contact of Dissimilar Materials Considering Tangential Tractions,” Mech. Mater., 40, pp. 936–948.

[CrossRef]Munisamy, R. L., Hills, D. A., and Nowell, D., 1992, “A Numerical Analysis of an Elastically Dissimilar Three-Dimensional Sliding Contact,” Proc. Inst. Mech. Eng., 206, pp. 203–211.

[CrossRef]Liu, C. H., Lin, Y. H., and Lin, P. H., 2007, “A Numerical Analysis of Partial Slip Problems Under Hertzian Contacts,” Meccanica, 42, pp. 197–206.

[CrossRef]Mandelbrot, B. B., 1967, “How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension,” Science, 156(3775), pp. 636–638.

Mandelbrot, B. B., 1975, “Stochastic Models for the Earth's Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands,” Proc. National Academy of Sciences U.S.A, 72(10), pp. 3825–3828.

Mandelbrot, B. B., 1983, *The Fractal Geometry of Nature*, W. H. Freeman and Company, New York.

Ling, F. F., 1989, “The Possible Role of Fractal Geometry in Tribology,” Tribol. Trans., 32(4), pp. 497–505.

Wang, S., and Komvopoulos, K., 1994, “A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis,” ASME J. Tribol., 116, pp. 812–823.

[CrossRef]Majumdar, A., and Bhushan, B., 1991, “Fractal Model of Elastic-Plastic Contact Between Rough Surfaces,” ASME J. Tribol., 113, pp. 1–11.

[CrossRef]Berry, M. V., and Lewis, Z. V., 1980, “On the Weierstrass-Mandelbrot Fractal Function,” Proc. Roy. Soc., London, Ser. A, 370, pp. 459–484.

Wang, S., and Komvopoulos, K., 1994, “A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications,” ASME J. Tribol., 116, pp. 824–832.

[CrossRef]Tian, H. L., Zhao, C. H., Zhu, D. L., Qin, H. L., Li, X., and Mao, K. M., 2012, “Modification of Normal and Tangential Stiffness for Joint Interface With Metallic Material and Experimental Validation,” Trans. Chin. Soc. Agric. Mach., 43(6), pp. 207–214 (in Chinese).

Yan, W., and Komvopoulos, K., 1998, “Contact Analysis of Elastic-Plastic Fractal Surfaces,” J. Appl. Phys., 84(7), pp. 3617–3624.

[CrossRef]Irimescu, L., Ciornei, F. C., Alacistelian, S., and Cerlinca, D. A., 2010, “A Model for Predicting the Micro-Slip Zone on a Fretting Contact Interface,” Ann. Oradea Univ., Fascicle Manage. Technol. Eng., 9(19), pp. 1.48–1.54. Available at:

http://imtuoradea.ro/auo.fmte/files-2010-v1/MECANICA/Irimescu%20Luminita%20L1.pdfWen, S. H., Zhang, X. L., Wen, X. G., Wang, P. Y., and Wu, M. X., 2009, “Fractal Model of Tangential Contact Stiffness of Joint Interfaces and Its Simulation,” Trans. Chin. Soc. Agric. Mach., 40(12), pp. 223–227 (in Chinese).

Yamada, A., and Kakubari, T., 1986, “Prediction of Dynamic Characteristics of Beam Containing Junction,” J. Jpn. Soc. Precis. Eng., 52(12), pp. 2051–2057.

[CrossRef]Liou, J. L., 2006, “The Theoretical Study for Microcontact Model with Variable Topography Parameters,” Ph.D. thesis, National Cheng Kung University, Taiwan.

Bhushan, B., 1984, “Analysis of the Real Area of Contact Between a Polymeric Magnetic Medium and a Rigid Surface,” ASME J. Tribol., 106(1), pp. 26–34.

[CrossRef]Jang, S. Y., Zheng, Y. J., and Zhu, H., 2010, “A Contact Stiffness Model of Machined Plane Joint Based on Fractal Theory,” ASME J. Tribol., 132(1), pp. 1–7.

[CrossRef]