Research Papers: Lubricants

Tribological Properties of Carbon Nanocapsule Particles as Lubricant Additive

[+] Author and Article Information
Yeau-Ren Jeng, Ping-Chi Tsai

Department of Mechanical Engineering,
National Chung Cheng University,
Chia-Yi 62102, Taiwan;
Advanced Institute of Manufacturing
with High-Tech Innovations,
National Chung Cheng University,
Chia-Yi 621, Taiwan

Yao-Huei Huang

Department of Mechanical Engineering,
National Chung Cheng University,
Chia-Yi 62102, Taiwan

Gan-Lin Hwang

Green Energy and Eco-Technology Center,
Industrial Technology Research Institute,
Tainan 710, Taiwan

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received January 7, 2014; final manuscript received May 22, 2014; published online July 29, 2014. Assoc. Editor: Hong Liang.

J. Tribol 136(4), 041801 (Jul 29, 2014) (9 pages) Paper No: TRIB-14-1005; doi: 10.1115/1.4027994 History: Received January 07, 2014; Revised May 22, 2014

An experimental investigation is performed into the tribological properties of mineral oil lubricants containing carbon nanocapsules (CNCs) additives with various concentrations (wt.%). Friction characteristics and wear behaviors at contact interfaces are examined by the block-on-ring tests, high-resolution transmission electron microscopy (HRTEM), and mapping (MAP) analysis. The results suggest that the addition of CNCs to the mineral oil yields an effective reduction in the friction coefficient at the contact interface. Molecular dynamics (MD) simulations clarify the lubrication mechanism of CNCs at the sliding system, indicating the tribological properties are essentially sensitive to the structural evolutions of CNCs.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Mabery, C. F., 1910, “Lubrication and Lubricats,” Ind. Eng. Chem., 169, pp. 317–328. [CrossRef]
Salomon, G., Gee, A. W. J. D., and Zaat, J. H., 1964, “Methanol-Chemical Factors in Mos2-Film Lubrication,” Wear, 7(1), pp. 87–101. [CrossRef]
Kroto, H. W., Heath, J. R., Brien, S. C. O., Curl, R. F., and Smalley, R. E., 1985, “C60: Buckminster-Fullerene,” Nature, 318, pp. 162–163. [CrossRef]
Kratschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., 1990, “Solid C60: A New Form of Carbon,” Nature, 347, pp. 354–357. [CrossRef]
Feng, B., 1997, “Relation Between the Structure of C60 and Its Lubricity: A Review,” Lubr. Sci., 9(2), pp. 181–183. [CrossRef]
Xue, Q. J., and Zhang, J.1995, “Friction and Wear Mechanisms of C60/Stearic-Acid Langmuir-Blodgett Films,” Tribol. Int., 28(5), pp. 287–291. [CrossRef]
Iwasa, Y., Arima, T., Fleming, M. R., Siegrist, T., Zhou, O., and Haddon, C. R., 1994, “New Phases of C60 Synthesized at High Pressure,” Science, 264(5165), pp. 1570–1572. [CrossRef] [PubMed]
Liu, P., 2006, “Molecular Dynamics Simulation of Triaxial Compression of C60 and C80 Solids,” Carbon, 44(8), pp. 1484–1490. [CrossRef]
Yamanaka, S., Kini, S. N., Kubo, A., Jida, S., and Kuramoto, H., 2008, “Topochemical 3D Polymerization of C60 Under High Pressure at Elevated Temperatures,” J. Am. Chem. Soc., 130(13), pp. 4303–4309. [CrossRef] [PubMed]
Meyers, M. A., Chen, P., Lin, A. Y., and Seki, Y., 2008, “Biological Materials: Structure and Mechanical Properties,” Prog. Mater. Sci., 53(1), pp. 1–206. [CrossRef]
Lakes, R., 1993, “Materials With Structural Hierarchy,” Nature, 361, pp. 511–515. [CrossRef]
Tenne, R., 1996, “Fullerene-Like Structures and Nanotubes From Inorganic Compounds,” Endeavour, 20(3), pp. 97–104. [CrossRef]
Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S. R., and Tenne, R., 1997, “Hollow Nanoparticles of WS2 as Potential Solid-State Lubricants,” Nature, 387, pp. 791–793. [CrossRef]
Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, H., Sloan, J., Hutchison, J. L., and Tenne, R., 1999, “Inorganic Fullerene-Like Material as Additives to Lubricants: Structure Function Relationship,” Wear, 225–229, pp. 975–982. [CrossRef]
Cizaire, L., Vacher, B., Mogne, T. L., Martin, J. M., Rapoport, L., Margolin, A., and Tenne, R., 2002, “Mechanisms of Ultra-Low Friction by Hollow Inorganic Fullerene-Like MoS2 Nanoparticles,” Surf. Coat. Technol., 160(2–3), pp. 282–287. [CrossRef]
Chhowalla, M., and Amaratunga, G. A. J., 2000, “Thin Films of Fullerene-Like MoS2 Nanoparticles With Ultra-Low Friction and Wear,” Nature, 407, pp. 164–167. [CrossRef] [PubMed]
Rapoport, L., Nepomnyashchy, O., Lapsker, I., Verdyan, A., Moshkovich, A., Feldman, Y., and Tenne, R., 2005, “Behavior of Fullerene-Like WS2 Nanoparticles Under Severe Contact Conditions,” Wear, 259(1–6), pp. 703–707. [CrossRef]
Kizuka, T., Kato, R., and Miyazawa, K., 2009, “Surface Breakdown Dynamics of Carbon Nanocapsules,” Nanotechnology, 20(10), p. 105205. [CrossRef] [PubMed]
Asaka, K., Miyazawa, K., and Kizuk, T., 2009, “The Toughness of Multiwall Carbon Nanocapsules,” Nanotechnology, 20(38), p. 385705. [CrossRef] [PubMed]
Saito, Y., 1995, “Nanoparticles and Filled Nanocapsules,” Carbon, 33(7), pp. 979–988. [CrossRef]
Hwang, G. L., 2007, “Preparation of Hollow Carbon Nanocapsules,” U.S. Patent No. 7,156,958 B2.
Chen, C. S., Chen, X. H., Xu, L. S., Yang, Z., and Li, W. H., 2005, “Modification of Multi-Walled Carbon Nanotubes With Fatty Acid and Their Tribological Properties as Lubricant Additive,” Carbon, 43, pp. 1660–1666. [CrossRef]
ASTM International, G77-05, “Standard Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test.” [CrossRef]
Hamrock, B. J., Schmid, S. R., and Jacobson, B. O., 2004, Fundamentals of Fluid Film Lubrication, CRC Press, Boca Raton, FL, pp. 589–603.
Hamrock, B. J., and Downson, D., 1981, Ball Bearing Lubrication, John Wiley & Sons Inc., New York.
Rapoport, L., Leshchinsky, V., Lvovsky, M., Lapsker, I., Volovik, Y., Feldman, Y., Popovitz-Biro, R., and Tenne, R., 2003, “Superior Tribological Properties of Powder Materials With Solid Lubricant Nanoparticles,” Wear, 255(7–12), pp. 794–800. [CrossRef]
Rapoport, L., Leshchinsky, V., Lvovsky, M., Lapsker, I., Volovik, Y., and Tenne, R., 2002, “Load Bearing Capacity of Bronze, Iron, and Iron–Nickel Powder Composites Containing Fullerene-Like WS2 Nanoparticles,” Tribol. Int., 35(1), pp. 47–53. [CrossRef]
Golan, Y., Drummond, C., Homyonfer, M., Feldman, Y., Tenne, R., and Israelachvili, J., 1999, “Microtribology and Direct Force Measurement of WS2 Nested Fullerene-Like Nanostructures,” Adv. Mater., 11, pp. 934–937. [CrossRef]
Teveta, O., Huth, P. V., Birob, R. P., Rosentsveiga, R., Wagnera, H. D., and Tennea, R., 2011, “Friction Mechanism of Individual Multilayered Nanoparticles,” Proc. Natl. Acad. Sci. USA, 108(50), pp. 19901–19906. [CrossRef]
Lahouij, I., Dassenoy, F., Knoop, L. D., Martin, J. M., and Vacher, B., 2011, “In-Situ TEM Observation of the Behavior of an Individual Fullerene-Like MoS2 Nanoparticle in a Dynamic Contact,” Tribol. Lett., 42(2), pp. 133–140. [CrossRef]
Zhang, P., Xue, Q., Du, Z., and Zhang, Z., 2000, “The Tribological Behavior of LB Films of Fatty Acids and Nanoparticles,” Wear, 242(1–2), pp. 147–151. [CrossRef]
Kalina, M., Kogovseka, J., and Remskarb, M., 2013, “Mechanisms and Improvements in the Friction and Wear Behavior Using MoS2 Nanotubes as Potential Oil Additives,” Wear, 280–281, pp. 36–45. [CrossRef]
Li, Y. X., and Yang, W., 2007, “Simulating Fullerene Ball Bearings of Ultra-LOW Friction,” Nanotechnology, 18(11), p. 115718. [CrossRef]
Jaekeun, L., Sangwon, C., Yujin, H., Han-Jong, C., Changgun, L., Youngmin, C., Bon-Chul, K., Hyeongkook, L., Byeongchul, L., Donghan, K., and SooH, K., 2009, “Application of Fullerene-Added Nano-Oil for Lubrication Enhancement in Friction Surfaces,” Tribol. Int., 42(3), pp. 440–447. [CrossRef]
Berthoud, P., Baumberger, T., G'Sell, C., and Hiver, J. M., 1999, “Physical Analysis of the State-and Rate-Dependent Friction Law,” Static Frict. Phys. Rev. B, 59(14), p. 14313. [CrossRef]
Baumberger, T., Berthoud, P., and Caroli, C., 1999, “Physical Analysis of the State-and Rate-Dependent Friction Law. II. Dynamic Friction,” Phys. Rev. B, 60, pp. 3928–3939. [CrossRef]
Rapoport, L., Leshchinsky, V., Lapsker, I., Volovik, Y., Nepomnyashchy, O., Lvovsky, M., Biro, R. P., Feldman, Y., and Tenne, R., 2003, “Tribological Properties of WS2 Nanoparticles Under Mixed Lubrication,” Wear, 255(7–12), pp. 785–793. [CrossRef]
Hu, Z. S., Dong, J. X., Chen, G. X., and He, J. Z., 2000, “Preparation and Tribological Properties of Nanoparticle Lanthanum Borate,” Wear, 243(1–2), pp. 43–47. [CrossRef]
Yu, H. L., Xu, Y., Shi, P. J., Xu, B. S., Wang, X. L., Liu, Q., and Wang, H. M., 2008, “Characterization and Nano-Mechanical Properties of Tribofilms Using Cu Nanoparticles as Additives,” Surf. Coat. Technol., 203(1–2), pp. 28–34. [CrossRef]
Sarkar, D., Basu, B., Cho, J. S., Chu, C. M., Hwang, S. S., and Park, W. S., 2005, “Tribological Properties of Ti3SiC2,” J. Am. Ceram. Soc., 88(11), pp. 3245–3248. [CrossRef]
Jeng, Y. R., Kao, W. C., and Tsai, P. C., 2007, “Investigation Into the Mechanical Contact Behavior of Single Asperities Using Static Atomistic Simulations,” Appl. Phys. Lett., 91(9), p. 091904. [CrossRef]
Jeng, Y. R., and Peng, S. R., 2009, “Investigation Into the Lateral Junction Growth of Single Asperity Contact Using Static Atomistic Simulations,” Appl. Phys. Lett., 94(16), p. 163103. [CrossRef]
Bhushan, B., Israelachvili, J. N., and Landman, U., 1994, “Nanotribology: Friction, Wear, and Lubrication at the Atomic Scale,” Nature, 374, pp. 607–616. [CrossRef]
Bucholz, E. W., Phillpot, S. R., and Sinnott, S. B., 2012, “Molecular Dynamics Investigation of the Lubrication Mechanism of Carbon Nano-Onions,” Comput. Mater. Sci., 54, pp. 91–96. [CrossRef]
Jeng, Y. R., Tsai, P. C., and Fang, T. H., 2005, “Molecular Dynamics Studies of Atomic-Scale Friction for Roller-on-Slab Systems With Different Rolling–Sliding Conditions,” Nanotechnology, 16(9), pp. 1941–1949. [CrossRef]
Jeng, Y. R., Tsai, P. C., and Fang, T. H., 2005, “Molecular-Dynamics Studies of Bending Mechanical Properties of Empty and C60-Filled Carbon Nanotubes Under Nanoindentation,” J. Chem. Phys., 122(22), p. 224713. [CrossRef] [PubMed]
Allen, M. P., and Tildesley, D. J., 1987, Computer Simulation of Liquids, Oxford University, New York.
Cornwell, C. F., and Wille, L. T., 1997, “Elastic Properties of Single-Walled Carbon Nanotubes in Compression,” Solid. State. Commun., 101(8), pp. 555–558. [CrossRef]
Yakobson, B. I., Brabec, C. J., and Bernholc, J., 1996, “Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response,” J. Phys. Rev. Lett., 76, pp. 2511–2514. [CrossRef]
Iijima, S., Brabec, C., Maiti, A., and Bernholc, J., 1996, “Structural Flexibility of Carbon Nanotubes,” J. Chem. Phys., 104, pp. 2089–2092. [CrossRef]
Sinnott, S. B., Shenderova, O. A., White, C. T., and Brenner, D. W., 1998, “Mechanical Properties of Nanotubule Fibers and Composites Determined From Theoretical Calculations and Simulations,” Carbon, 36(1–2), pp. 1–9. [CrossRef]
Harrison, J. A., Stuart, S. J., Robertson, D. H., and White, C. T., 1997, “Properties of Capped Nanotubes When Used as SPM Tips,” J. Phys. Chem. B, 101, pp. 9682–9685. [CrossRef]
Yao, N., and Lordi, V., 1998, “Carbon Nanotube Caps as Springs: Molecular Dynamics Simulations,” Phys. Rev. B, 58, pp. 12649–12651. [CrossRef]
Garg, A., Han, J., and Sinnott, S. B., 1998, “Interactions of Carbon-Nanotubule Proximal Probe Tips With Diamond and Graphene,” Phys. Rev. Lett., 81, pp. 2260–2263. [CrossRef]
Ni, B., and Sinnott, S. B., 2000, “Chemical Functionalization of Carbon Nanotubes Through Energetic Radical Collisions,” Phys. Rev. B, 61, pp. R16343–R16346. [CrossRef]
Mao, Z., and Sinnott, S. B., 2000, “A Computational Study of Molecular Diffusion and Dynamic Flow Through Carbon Nanotubes,” J. Phys. Chem. B, 104(19), pp. 4618–4624. [CrossRef]
Mao, Z., and Sinnott, S. B., 2001, “Separation of Organic Molecular Mixtures in Carbon Nanotubes and Bundles: Molecular Dynamics Simulations,” J. Phys. Chem. B., 105(29), pp. 6916–6924. [CrossRef]
Haile, J. M., 1992, Molecular Dynamics Simulation: Elementary Method, Wiley, New York.


Grahic Jump Location
Fig. 1

HRTEM image showing spherical multilayered structure of CNCs with particle size ranging from 30 to 100 nm

Grahic Jump Location
Fig. 2

Block-on-ring friction and wear test machine. (Schematic illustration).

Grahic Jump Location
Fig. 3

High-resolution SEM and TEM images showing surface dispersion of CNC particles in lubricants with different CNC concentrations: (a) 0 wt.%, (b) 0.01 wt.%, (c) 0.03 wt.%, (d) 0.05 wt.%, (e) 0.07 wt.%, and (f) 0.1 wt.%

Grahic Jump Location
Fig. 4

Variation of friction coefficient over time as function of CNC concentration. Note that the load and sliding velocity have values of 650 N and 1.65 m/s, respectively.

Grahic Jump Location
Fig. 5

Variation of friction coefficient with CNC particle concentration given sliding velocities ranging from 0.55 to 1.65 m/s and a constant contact load of 650 N

Grahic Jump Location
Fig. 6

Penetration and filling behavior of CNC particles in lubricants with CNC particle concentrations of: (a) 0.01 wt.% and (b) 0.05 wt.%.

Grahic Jump Location
Fig. 7

Variation of friction coefficient with CNC particle concentration given sliding velocity of 1.65 m/s and the applied loads of 650 N and 1000 N

Grahic Jump Location
Fig. 8

Variation of wear volumes with various CNC particle concentrations given the applied loads of 650 N and 1000 N, respectively

Grahic Jump Location
Fig. 9

(a) TEM, (b) and (c) SEM, (d) and (e) EDS, and (d) MAP analysis results for wear surface given contact load of 650 N. (Note that the CNC concentration is 0.05 wt.% and the sliding velocity is 1.65 m/s.)

Grahic Jump Location
Fig. 10

(a) SEM and EDS analysis results for wear surface given contact load of 650 N. (Note that the CNC concentration is 0.05 wt.% and the sliding velocity is 1.65 m/s.

Grahic Jump Location
Fig. 11

(a) and (b) SEM, (c) EDS, and (d) MAP analysis results for wear surface given contact load of 1000 N. (Note that the CNC concentration is 0.05 wt.% and the sliding velocity is 1.65 m/s.)

Grahic Jump Location
Fig. 12

MD simulation model used to investigate loading–sliding behavior of individual C60 nanoparticle

Grahic Jump Location
Fig. 13

Atomistic configurations showing three distinct tribological mechanisms of an individual C60 nanoparticle during loading–sliding process: (a) rolling (), (b) rolling–sliding (), and (c) sliding ().




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In