0
Research Papers: Friction and Wear

Design and Synthesis of a Geopolymer-Enhanced Quasi-Crystalline Composite for Resisting Wear and Corrosion

[+] Author and Article Information
M. Fevzi Ozaydin

Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843

Hong Liang

Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: hliang@tamu.edu

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received April 1, 2015; final manuscript received July 22, 2015; published online October 15, 2015. Assoc. Editor: Dae-Eun Kim.

J. Tribol 138(2), 021601 (Oct 15, 2015) (6 pages) Paper No: TRIB-15-1101; doi: 10.1115/1.4031400 History: Received April 01, 2015; Revised July 22, 2015

Multiphase composites are attractive for improved mechanical performance and corrosion resistance. In this research, a new composite consisting quasi-crystalline Al75Mn14Si7Fe4 alloy of icosahedral, cubic α-AlMnSiFe, monoclinic Al13Fe4 phases, and ferro-silico-aluminate geopolymer was synthesized using rapid solidification and thermal treatment methods. The concentration of icosahedral phase (i-phase) was controlled and the formation of geopolymer was obtained through heat treatment. Characterization showed that the microhardness and wear resistance were increased with the amount of i-phase. The corrosion resistance, on the other hand, was improved with the existence of the geopolymer. This research demonstrates an effective approach in processing a multiphase composite that has desired properties and performance through multiphase design and composition.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Shechtman, D. , Schaefer, R. J. , and Biancaniello, F. S. , 1984, “ Precipitation in Rapidly Solidified Al-Mn Alloys,” Metall. Trans. A, 15(11), pp. 1987–1997. [CrossRef]
Dubois, J.-M. , 2012, “ Properties and Applications of Quasicrystals and Complex Metallic Alloys,” Chem. Soc. Rev., 41(20), pp. 6760–6777. [CrossRef] [PubMed]
Donnadieu, P. , Lapasset, G. , and Sanders, T. H. , 1994, “ Manganese-Induced Ordering in the Alpha-(Al-Mn-Fe-Si) Approximant Phase,” Philos. Mag. Lett., 70(5), pp. 319–326. [CrossRef]
Inoue, A. , 1992, Formation and High Mechanical Strength of Al-Based Alloys Containing a Nanoscale Icosahedral Phase as a Main Constituent, Akita University, Institute for Materials Research, Akita, Japan, pp. 138–160.
Bokhonov, B. B. , 2008, “ Mechanical Alloying and Self-Propagating High-Temperature Synthesis of Stable Icosahedral Quasicrystals,” J. Alloys Compd., 461(1–2), pp. 150–153. [CrossRef]
Barua, P. , Srinivas, V. , and Murty, B. S. , 2000, “ Synthesis of Quasicrystalline Phase by Mechanical Alloying of Al70Cu20Fe10,” Philos. Mag. A, 80(5), pp. 1207–1217. [CrossRef]
Shamah, A. M. , Ibrahim, S. , and Hanna, F. F. , 2011, “ Formation of Nano Quasicrystalline and Crystalline Phases by Mechanical Alloying,” J. Alloys Compd., 509(5), pp. 2198–2202. [CrossRef]
Huttunen-Saarivirta, E. , 2004, “ Microstructure, Fabrication and Properties of Quasicrystalline Al-Cu-Fe Alloys: A Review,” J. Alloys Compd., 363(1–2), pp. 150–174.
Liu, W. , Zhang, S. , and Wang, L. , 2012, “ Ti1.4V0.6Ni Quasicrystal and Its Composites With xV(18)Ti(15)Zr(18)Ni(29)Cr(5)Co(7)Mn Alloy Used as Negative Electrode Materials for the Nickel-Metal Hydride (Ni-MH) Secondary Batteries,” Mater. Lett., 79, pp. 122–124. [CrossRef]
Kang, H. , Li, X. , Wang, T. , Liu, D. , Su, Y. , Hu, Z. , Guo, J. , and Fu, H. , 2014, “ Crystal-Quasicrystal Transition Depending on Cooling Rates in Directionally Solidified Al-3Mn-7Be (at.%) Alloy,” Intermetallics, 44, pp. 101–105. [CrossRef]
Grushko, B. , and Velikanova, T. , 2007, “ Formation of Quasiperiodic and Related Periodic Intermetallics in Alloy Systems of Aluminum With Transition Metals,” Calphad, 31(2), pp. 217–232. [CrossRef]
Koster, U. , Liu, W. , Liebertz, H. , and Michel, M. , 1993, “ Mechanical-Properties of Quasi-Crystalline and Crystalline Phases in Al-Cu-Fe Alloys,” J. Non-Cryst. Solids, 153, pp. 446–452. [CrossRef]
Bendersky, L. A. , Cahn, J. W. , and Gratias, D. , 1989, “ A Crystalline Aggregate With Icosahedral Symmetry-Implication for the Crystallography of Twinning and Grain-Boundaries,” Philos. Mag. B, 60(6), pp. 837–854. [CrossRef]
Yan, Y. F. , Wang, R. H. , and Gui, J. I. , 1990, “ Stable and Metastable Phases in Some Quaternary Al-Si-Mn-Fe Alloys,” J. Phys.: Condens. Matter, 2(38), pp. 7733–7741. [CrossRef]
Dubois, J. M. , and Lifshitz, R. , 2011, “ Quasicrystals: Diversity and Complexity,” Philos. Mag., 91(19–21), pp. 2971–2982. [CrossRef]
Dubois, J.-M. , 1994, “ Towards Applications of Quasicrystals,” Mater. Sci. Eng., A179/A180, pp. 122–126. [CrossRef]
Bendersky, L. A. , and Schaefer, R. J. , 1986, “ Formation of Quasi-Crystals,” Phys. A, 140(1–2), pp. 298–305. [CrossRef]
Mihoc, C. , Nicula, R. , Stir, M. , Otterstein, E. , and Burkel, E. , 2012, Synthesis of Quasicrystal/Polymer Composites, Marie Curie Fellowship Association, Germany.
Anderson, B. C. , Bloom, P. D. , Baikerikar, K. G. , Sheares, V. V. , and Mallapragada, S. K. , 2002, “ At-Cu-Fe Quasicrystal/Ultra-High Molecular Weight Polyethylene Composites as Biomaterials for Acetabular Cup Prosthetics,” Biomaterials, 23(8), pp. 1761–1768. [CrossRef] [PubMed]
Bloom, P. D. , Baikerikar, K. G. , Anderegg, J. W. , and Sheares, V. V. , 2003, “ Fabrication and Wear Resistance of Al-Cu-Fe Quasicrystal-Epoxy Composite Materials,” Mater. Sci. Eng. A, 360(1–2), pp. 46–57. [CrossRef]
Bloom, P. D. , Baikerikar, K. G. , Otaigbe, J. U. , and Sheares, V. V. , 2000, “ Development of Novel Polymer/Quasicrystal Composite Materials,” Mater. Sci. Eng. A, 294–296, pp. 156–159. [CrossRef]
Bloom, P. D. , Baikerikar, K. G. , Anderson, B. C. , Mallapragada, S. K. , and Sheares, V. V. , 2001, “ Ultra High Molecular Weight Polyethylene Quasicrystal Composites for Hip Arthroplasty Femoral Components,” Abstr. Pap. Am. Chem. Soc., 222, p. U394.
Bloom, P. D. , Baikerikar, K. G. , and Sheares, V. V. , 2000, “ Wear Properties of Novel Al-Cu-Fe Quasicrystal-Polymer Composites,” Abstr. Pap. Am. Chem. Soc., 219, p. U489.
Liu, Y. J. , Bloom, P. D. , Sheares, V. V. , and Otaigbe, J. U. , 2002, “ A Novel Polyamide 12/Al-Cu-Fe Quasicrystal Composite,” Advanced Fibers, Plastics, Laminates and Composites, F. T. Wallenberger , N. E. Weston , R. Ford , R. P. Wool , and K. Chawla , eds., Materials Research Society, Boston, MA, pp. 339–344.
Huttunen-Saarivirta, E. , and Tiainen, T. , 2004, “ Corrosion Behaviour of Al-Cu-Fe Alloys Containing a Quasicrystalline Phase,” Mater. Chem. Phys., 85(2–3), pp. 383–395. [CrossRef]
Wang, X. L. , Li, X. S. , Zhang, Z. J. , Zhang, S. S. , Liu, W. Q. , and Wang, L. M. , 2011, “ Preparation and Wear Resistance of Ti-Zr-Ni Quasicrystal and Polyamide Composite Materials,” Philos. Mag., 91(19–21), pp. 2929–2936. [CrossRef]
Duxson, P. , Provis, J. L. , Lukey, G. C. , and Van Deventer, J. S. J. , 2007, “ The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’,” Cem. Concr. Res., 37(12), pp. 1590–1597. [CrossRef]
Duxson, P. , Mallicoat, S. W. , Lukey, G. C. , Kriven, W. M. , and van Deventer, J. S. J. , 2007, “ The Effect of Alkali and Si/Al Ratio on the Development of Mechanical Properties of Metakaolin-Based Geopolymers,” Colloids Surf., A, 292(1), pp. 8–20. [CrossRef]
Davidovits, J. , 1991, “ Geopolymers-Inorganic Polymeric New Materials,” J. Therm. Anal., 37(8), pp. 1633–1656. [CrossRef]
Duxson, P. , Fernandez-Jimenez, A. , Provis, J. L. , Lukey, G. C. , Palomo, A. , and van Deventer, J. S. J. , 2007, “ Geopolymer Technology: The Current State of the Art,” J. Mater. Sci., 42(9), pp. 2917–2933. [CrossRef]
Davidovits, J. , 2008, “ Physical Properties of Condensed Geopolymers,” Geopolymer Chemistry and Applications, Materials Research Society, Boston, MA, pp. 335–351.
Duxson, P. , Lukey, G. C. , and van Deventer, J. S. J. , 2007, “ Physical Evolution of Na-Geopolymer Derived From Metakaolin up to 1000 Degrees C,” J. Mater. Sci., 42(9), pp. 3044–3054. [CrossRef]
Davidovits, J. , 1989, “ Geopolymers and Geopolymeric Materials,” J. Therm. Anal., 35(2), pp. 429–441. [CrossRef]
Davidovits, J. , and Davidovics, M. , 1991, “ Geopolymer-Ultra-High Temperature Tooling Material for the Manufacture of Advanced Composites,” Geopolymer Tooling Material, 2, pp. 1939–1949.
Belena, I. , Tendero, M. J. L. , Tamayo, E. M. , and Vie, D. , 2004, “ Study and Optimizing of the Reaction Parametres for Geopolymeric Material Manufacture,” Bol. Soc. Esp. Cerám. Vidrio, 43(2), pp. 569–572. [CrossRef]
Lecomte, I. , Liegeois, M. , Rulmont, A. , Cloots, R. , and Maseri, F. , 2003, “ Synthesis and Characterization of New Inorganic Polymeric Composites Based on Kaolin or White Clay and on Ground-Granulated Blast Furnace Slag,” J. Mater. Res., 18(11), pp. 2571–2579. [CrossRef]
Altidis, J. D. , de Barros, S. , de Souza, J. , Torres, S. M. , and De Lima, S. J. G. , 2012, “ Adhesion Tests in Quasicrystal Powders Reinforced Geopolymer Composites,” Advanced Powder Technology Viii, Pts 1 and 2, L. Salgado , and F. Ambrozio , eds., Materials Research Society, Boston, MA, pp. 186–189.
Altidis, J. D. , Lima, S. J. G. , Torres, S. M. , Lima, B. , Medeiros, E. S. , and de Barros, S. , 2014, “ The Influence of Alloying Elements on Adhesive Properties of Epoxy-Quasicrystal Composites,” J. Adhes., 90(1), pp. 41–49. [CrossRef]
Ramesh, C. S. , Pramod, S. , and Keshavamurthy, R. , 2011, “ A Study on Microstructure and Mechanical Properties of Al 6061–TiB2 In-Situ Composites,” Mater. Sci. Eng., A, 528(12), pp. 4125–4132. [CrossRef]
Swaddiwudhipong, S. , Zeng, K. , Tho, K. K. , and Liu, Z. S. , 2005, “ Simulation of Instrumented Indentation and Material Characterization,” Mater. Sci. Eng., A, 390(1–2), pp. 202–209.

Figures

Grahic Jump Location
Fig. 1

Quasi-crystalline alloy process steps

Grahic Jump Location
Fig. 2

(a) XRD patterns of Al75Mn14Si7Fe4 alloy and (b) and (c) SEM images showing the microstructure of as-cast and annealed conditions, respectively

Grahic Jump Location
Fig. 3

Comparison of the microhardness data

Grahic Jump Location
Fig. 4

Comparison of coefficient of friction plotted against time

Grahic Jump Location
Fig. 5

(a) SEM image of as-cast Al75Mn14Si7Fe4, (b) 3D laser confocal microscopic surface height image of as-cast Al75Mn14Si7Fe4, (c) laser confocal microscopic two-dimensional image of as-cast Al75Mn14Si7Fe4 wear track, (d) 3D image of surface roughness profile of as-cast Al75Mn14Si7Fe4, (e) SEM image of annealed Al75Mn14Si7Fe4, (f) 3D laser confocal microscopic surface height image of annealed Al75Mn14Si7Fe4, (g) laser confocal microscopic two-dimensional image of annealed Al75Mn14Si7Fe4 wear track, (h) 3D image of surface roughness profile of annealed Al75Mn14Si7Fe4, (i) laser optical microscopic image of geopolymer, and (j) 3D image of surface roughness profile of geopolymer

Grahic Jump Location
Fig. 6

Polarization curves of as-cast and annealed Al75Mn14Si7Fe4 alloy in 0.1 M NaCl solution

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In