0
Research Papers: Tribochemistry and Tribofilms

Design and Synthesis of a Superhydrophobic PVDF-Based Composite

[+] Author and Article Information
Hyunho Choi, Kyungjun Lee, John Reeks

Mechanical Engineering,
Texas A&M University,
College Station, TX 77843

Hong Liang

Mechanical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: hliang@tamu.edu

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received April 18, 2015; final manuscript received July 23, 2015; published online October 15, 2015. Assoc. Editor: Min Zou.

J. Tribol 138(2), 022301 (Oct 15, 2015) (6 pages) Paper No: TRIB-15-1124; doi: 10.1115/1.4031402 History: Received April 18, 2015; Revised July 23, 2015

The ability to design, control, and synthesize a material surface with superhydrophobicity is of great interests in many engineering applications. Here, we report a cost-effective process to fabricate poly(vinylidene fluoride) (PVDF)/zirconium(IV) oxide (ZrO2) composites with superhydrophobicity. This is achieved by combining an antisolvent that induces phase separation, i.e., the precipitation of PVDF from the solution through a spray-on method on various liquids. The material surfaces possess wrinkled micron-sized beads which displayed superhydrophobicity in water without any chemical treatment. The process developed in this research presented a fast and simple approach in making hydrophobic surfaces.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ebert, D. , and Bhushan, B. , 2012, “ Wear-Resistant Rose Petal-Effect Surfaces With Superhydrophobicity and High Droplet Adhesion Using Hydrophobic and Hydrophilic Nanoparticles,” J. Colloid Interface Sci., 384(1), pp. 182–188. [CrossRef] [PubMed]
Lin, J. , Cai, Y. , Wang, X. , Ding, B. , Yu, J. , and Wang, M. , 2011, “ Fabrication of Biomimetic Superhydrophobic Surfaces Inspired by Lotus Leaf and Silver Ragwort Leaf,” Nanoscale, 3(3), pp. 1258–1262. [CrossRef] [PubMed]
Farhadi, S. , Farzaneh, M. , and Kulinich, S. A. , 2011, “ Anti-Icing Performance of Superhydrophobic Surfaces,” Appl. Surf. Sci., 257(14), pp. 6264–6269. [CrossRef]
Zhang, X. , Shi, F. , Niu, J. , Jiang, Y. , and Wang, Z. , 2008, “ Superhydrophobic Surfaces: From Structural Control to Functional Application,” J. Mater. Chem., 18(6), pp. 621–633. [CrossRef]
Jung, Y. C. , and Bhushan, B. , 2009, “ Mechanically Durable Carbon Nanotube−Composite Hierarchical Structures With Superhydrophobicity, Self-Cleaning, and Low-Drag,” ACS Nano, 3(12), pp. 4155–4163. [CrossRef] [PubMed]
Feng, L. , Zhang, Y. , Xi, J. , Zhu, Y. , Wang, N. , Xia, F. , and Jiang, L. , 2008, “ Petal Effect: A Superhydrophobic State With High Adhesive Force,” Langmuir, 24(8), pp. 4114–4119. [CrossRef] [PubMed]
Wenzel, R. N. , 1936, “ Resistance of Solid Surfaces to Wetting by Water,” Ind. Eng. Chem., 28(8), pp. 988–994. [CrossRef]
Cassie, A. B. D. , and Baxter, S. , 1944, “ Wettability of Porous Surfaces,” Trans. Faraday Soc., 40, pp. 546–551. [CrossRef]
Feng, L. , Li, S. , Li, Y. , Li, H. , Zhang, L. , Zhai, J. , Song, Y. , Liu, B. , Jiang, L. , and Zhu, D. , 2002, “ Super-Hydrophobic Surfaces: From Natural to Artificial,” Adv. Mater., 14(24), pp. 1857–1860. [CrossRef]
Miwa, M. , Nakajima, A. , Fujishima, A. , Hashimoto, K. , and Watanabe, T. , 2000, “ Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces,” Langmuir, 16(13), pp. 5754–5760. [CrossRef]
Öner, D. , and McCarthy, T. J. , 2000, “ Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability,” Langmuir, 16(20), pp. 7777–7782. [CrossRef]
Ma, M. , Mao, Y. , Gupta, M. , Gleason, K. K. , and Rutledge, G. C. , 2005, “ Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition,” Macromolecules, 38(23), pp. 9742–9748. [CrossRef]
Burkarter, E. , Saul, C. K. , Thomazi, F. , Cruz, N. C. , Roman, L. S. , and Schreiner, W. H. , 2007, “ Superhydrophobic Electrosprayed PTFE,” Surf. Coat. Technol., 202(1), pp. 194–198. [CrossRef]
Yang, C. , Li, X.-M. , Gilron, J. , Kong, D.-F. , Yin, Y. , Oren, Y. , Linder, C. , and He, T. , 2014, “ CF4 Plasma-Modified Superhydrophobic PVDF Membranes for Direct Contact Membrane Distillation,” J. Membr. Sci., 456, pp. 155–161. [CrossRef]
Latthe, S. S. , Imai, H. , Ganesan, V. , and Rao, A. V. , 2009, “ Superhydrophobic Silica Films by Sol–Gel Co-Precursor Method,” Appl. Surf. Sci., 256(1), pp. 217–222. [CrossRef]
Lau, K. K. S. , Bico, J. , Teo, K. B. K. , Chhowalla, M. , Amaratunga, G. A. J. , Milne, W. I. , McKinley, G. H. , and Gleason, K. K. , 2003, “ Superhydrophobic Carbon Nanotube Forests,” Nano Lett., 3(12), pp. 1701–1705. [CrossRef]
Aruna, S. T. , Binsy, P. , Richard, E. , and Basu, B. J. , 2012, “ Properties of Phase Separation Method Synthesized Superhydrophobic Polystyrene Films,” Appl. Surf. Sci., 258(7), pp. 3202–3207. [CrossRef]
Feng, L. , Song, Y. , Zhai, J. , Liu, B. , Xu, J. , Jiang, L. , and Zhu, D. , 2003, “ Creation of a Superhydrophobic Surface From an Amphiphilic Polymer,” Angew. Chem., Int. Ed., 42(7), pp. 800–802. [CrossRef]
Jiang, L. , Zhao, Y. , and Zhai, J. , 2004, “ A Lotus-Leaf-Like Superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics,” Angew. Chem., Int. Ed., 43(33), pp. 4338–4341. [CrossRef]
Basu, B. B. J. , and Paranthaman, A. K. , 2009, “ A Simple Method for the Preparation of Superhydrophobic PVDF–HMFS Hybrid Composite Coatings,” Appl. Surf. Sci., 255(8), pp. 4479–4483. [CrossRef]
Amigoni, S. , Taffin de Givenchy, E. , Dufay, M. , and Guittard, F. , 2009, “ Covalent Layer-by-Layer Assembled Superhydrophobic Organic−Inorganic Hybrid Films,” Langmuir, 25(18), pp. 11073–11077. [CrossRef] [PubMed]
Park, S. H. , Lee, S. M. , Lim, H. S. , Han, J. T. , Lee, D. R. , Shin, H. S. , Jeong, Y. , Kim, J. , and Cho, J. H. , 2010, “ Robust Superhydrophobic Mats Based on Electrospun Crystalline Nanofibers Combined With a Silane Precursor,” ACS Appl. Mater. Interfaces, 2(3), pp. 658–662. [CrossRef] [PubMed]
Yuyang, L. , Xianqiong, C. , and Xin, J. H. , 2006, “ Super-Hydrophobic Surfaces From a Simple Coating Method: A Bionic Nanoengineering Approach,” Nanotechnology, 17(13), pp. 3259–3263. [CrossRef]
Jindasuwan, S. , Nimittrakoolchai, O. , Sujaridworakun, P. , Jinawath, S. , and Supothina, S. , 2009, “ Surface Characteristics of Water-Repellent Polyelectrolyte Multilayer Films Containing Various Silica Contents,” Thin Solid Films, 517(17), pp. 5001–5005. [CrossRef]
Yan, L. , Wang, K. , and Ye, L. , 2003, “ Super Hydrophobic Property of PVDF/CaCO3 Nanocomposite Coatings,” J. Mater. Sci. Lett., 22(23), pp. 1713–1717. [CrossRef]
Gu, X. , Michaels, C. A. , Nguyen, D. , Jean, Y. C. , Martin, J. W. , and Nguyen, T. , 2006, “ Surface and Interfacial Properties of PVDF/Acrylic Copolymer Blends Before and After UV Exposure,” Appl. Surf. Sci., 252(14), pp. 5168–5181. [CrossRef]
Joo, J. , Yu, T. , Kim, Y. W. , Park, H. M. , Wu, F. , Zhang, J. Z. , and Hyeon, T. , 2003, “ Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals,” J. Am. Chem. Soc., 125(21), pp. 6553–6557. [CrossRef] [PubMed]
Kaneko, Y. , and Arake, T. , 2012, “ Sol-Gel Preparation of Highly Water-Dispersible Silsesquioxane/Zirconium Oxide Hybrid Nanoparticles,” Int. J. Polym. Sci., 2012, p. 984501.
Braga, F. J. C. , Rogero, S. O. , Couto, A. A. , Marques, R. F. C. , Ribeiro, A. A. , and Campos, J. S. d. C. , 2007, “ Characterization of PVDF/HAP Composites for Medical Applications,” Mater. Res., 10, pp. 247–251.
Bottino, A. , Capannelli, G. , and Comite, A. , 2002, “ Preparation and Characterization of Novel Porous PVDF-ZrO2 Composite Membranes,” Desalination, 146(1–3), pp. 35–40. [CrossRef]
Bottino, A. , Camera-Roda, G. , Capannelli, G. , and Munari, S. , 1991, “ The Formation of Microporous Polyvinylidene Difluoride Membranes by Phase Separation,” J. Membr. Sci., 57(1), pp. 1–20. [CrossRef]
Deshmukh, S. P. , and Li, K. , 1998, “ Effect of Ethanol Composition in Water Coagulation Bath on Morphology of PVDF Hollow Fibre Membranes,” J. Membr. Sci., 150(1), pp. 75–85. [CrossRef]
Su, C. , 2012, “ A Simple and Cost-Effective Method for Fabricating Lotus-Effect Composite Coatings,” J. Coat. Technol. Res., 9(2), pp. 135–141. [CrossRef]
Lai, Y. , Gao, X. , Zhuang, H. , Huang, J. , Lin, C. , and Jiang, L. , 2009, “ Designing Superhydrophobic Porous Nanostructures With Tunable Water Adhesion,” Adv. Mater., 21(37), pp. 3799–3803. [CrossRef]
Guangming, G. , Juntao, W. , Yong, Z. , Jingang, L. , Xu, J. , and Lei, J. , 2014, “ A Novel Fluorinated Polyimide Surface With Petal Effect Produced by Electrospinning,” Soft Matter, 10(4), pp. 549–552. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) Schematic fabrication process of spraying method and (b) PVDF films sprayed on water bath

Grahic Jump Location
Fig. 2

SEM images of (1) upper sides, (2) bottom sides, and (3) beads on bottom: PVDF film (a) on water and (b) on ethanol/water and PVDF/ZrO2 PVDF film (c) on water and (d) on ethanol/water

Grahic Jump Location
Fig. 3

Static contact angle by 5 μL water droplets (*two-sample t-test, p = 0.0275)

Grahic Jump Location
Fig. 4

Tilting angles for sliding of 20 μL water droplets (*two-sample t-test, p = 0.0127)

Grahic Jump Location
Fig. 5

Surface profiles of bottom sides: PVDF film (a) on water and (b) on ethanol/water and PVDF/ZrO2 composite PVDF film (c) on water and (d) on ethanol/water

Grahic Jump Location
Fig. 6

Schematics of wetting models of improved- or superhydrophobic PVDF films and PVDF/ZrO2 films (a) on water and (b) ethanol/water

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In