0
Research Papers: Friction and Wear

High Temperature Lubricating Behavior of NiAl Matrix Composites With Addition of CuO

[+] Author and Article Information
Shengyu Zhu, Jun Cheng, Zhuhui Qiao

State Key Laboratory of Solid Lubrication,
Lanzhou Institute of Chemical Physics,
Chinese Academy of Sciences,
Lanzhou 730000, China

Yuan Tian

Aerospace Research Institute of Materials
and Processing Technology,
Beijing 100076, China

Jun Yang

State Key Laboratory of Solid Lubrication,
Lanzhou Institute of Chemical Physics,
Chinese Academy of Sciences,
Lanzhou 730000, China
e-mail: jyang@licp.cas.cn

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received May 13, 2015; final manuscript received February 20, 2016; published online May 18, 2016. Assoc. Editor: Robert Wood.

J. Tribol 138(3), 031607 (May 18, 2016) (9 pages) Paper No: TRIB-15-1156; doi: 10.1115/1.4033133 History: Received May 13, 2015; Revised February 20, 2016

High temperature self-lubricating NiAl matrix composites with addition of CuO (15, 20, and 25 wt.%) were fabricated by powder metallurgy technique, and the tribological behavior from room temperature to 1000 °C was investigated. It was found that Ni–Cu and Al2O3 phases formed during the fabrication process due to reaction of NiAl and CuO. The tribological results showed that the composite with addition of 25 wt.% CuO has a favorable friction coefficient of about 0.2 and excellent wear resistance with the magnitude of 10−6 mm3 N−1 m−1 at high temperatures (800 and 1000 °C).

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Deevi, S. C. , Sikkat, V. K. , and Liu, C. T. , 1991, “ Processing, Properties, and Applications of Nickel and Iron Aluminides,” Prog. Mater. Sci., 42, pp. 177–192. [CrossRef]
Yamaguchi, M. , Inui, H. , and Ito, K. , 2000, “ High Temperature Structural Intermetallics,” Acta Mater., 48(1), pp. 307–322. [CrossRef]
Czeppe, T. , and Wierzbinski, S. , 2000, “ Structure and Mechanical Properties of NiAl and Ni3Al-Based Alloys,” Int. J. Mech. Sci., 42(8), pp. 1499–1518. [CrossRef]
Bei, H. , and George, E. P. , 2005, “ Microstructures and Mechanical Properties of a Directionally Solidified NiAl-Mo Eutectic Alloy,” Acta Mater., 53(1), pp. 69–77. [CrossRef]
Johnson, D. R. , Chen, X. F. , Oliver, B. F. , and Noebe, R. D. , 1995, “ Whittenberger JD. Processing and Mechanical Properties of In-Situ Composites From the NiAl-Cr and the NiAl-(Cr, Mo) Eutectic Systems,” Intermetallics, 3(2), pp. 99–113. [CrossRef]
Grabk, H. J. , Brumm, M. W. , and Wagemann, B. , 1996, “ The Oxidation of NiAl,” Mater. Corros., 47(12), pp. 675–677. [CrossRef]
Guo, J. T. , and Xu, C. M. , 2002, “ Effect of NiAl Microcrystalline Coating on the High-Temperature Oxidation Behavior of NiAl-28Cr-5Mo-1Hf,” Oxid. Met., 58(5), pp. 457–468. [CrossRef]
Jin, J. H. , and Stephenson, D. J. , 1998, “ The Sliding Wear Behaviour of Reactively Hot Pressed Nickel Aluminides,” Wear, 217(2), pp. 200–207. [CrossRef]
Hawk, J. A. , and Alman, D. E. , 1999, “ Abrasive Wear Behavior of NiAl and NiAl-TiB2 Composites,” Wear, 225–229, pp. 544–556. [CrossRef]
Lee, H. Y. , Roe, J. K. , and Ikenaga, A. , 2006, “ Sliding Wear Properties for Ni-Al Based Intermetallic Compound Layer Coated on Ductile Cast Iron by Combustion Synthesis,” Wear, 260(1–2), pp. 83–89. [CrossRef]
Johnson, B. J. , Kennedy, F. E. , and Baker, I. , 1996, “ Dry Sliding Wear of NiAl,” Wear, 192(1–2), pp. 241–247. [CrossRef]
Murakami, T. , Ouyang, J. H. , Sasaki, S. , Umeda, K. , and Yoneyama, Y. , 2005, “ High-Temperature Tribological Properties of Al2O3, Ni-20 Mass% Cr and NiAl Spark-Plasma-Sintered Composites Containing BaF2-CaF2 Phase,” Wear, 259(1–6), pp. 626–633. [CrossRef]
Jeng, M. C. , and Soong, Y. L. , 1993, “ Wear Behaviour of Solid Lubricants Ag and BaF2-CaF2 Obtained by Laser Surface Cladding,” Surf. Coat. Technol., 57(2–3), pp. 145–150. [CrossRef]
Zhu, S. Y. , Bi, Q. L. , Yang, J. , and Liu, W. M. , 2011, “ NiAl Matrix High Temperature Self-Lubricating Composite,” Tribol. Lett., 41(3), pp. 535–540. [CrossRef]
Liu, E. , Gao, Y. , Bai, Y. , Yi, G. , Wang, W. , Zeng, Z. , and Jia, J. , 2014, “ Tribological Properties of Self-Lubricating NiAl/Mo-Based Composites Containing AgVO3 Nanowires,” Mater. Charact., 97, pp. 116–124. [CrossRef]
Shi, X. , Zhai, W. , Wang, M. , Xu, Z. , Yao, J. , Song, S. , and Wang, Y. , 2014, “ Tribological Behaviors of NiAl Based Self-Lubricating Composites Containing Different Solid Lubricants at Elevated Temperatures,” Wear, 310(1–2), pp. 1–11. [CrossRef]
Li, F. , Cheng, J. , Qiao, Z. , Ma, J. , Zhu, S. , Fu, L. , Yang, J. , and Liu, W. , 2013, “ A Nickel-Alloy-Based High-Temperature Self-Lubricating Composite With Simultaneously Superior Lubricity and High Strength,” Tribol. Lett., 49(3), pp. 573–577. [CrossRef]
Zhu, S. Y. , Kong, L. Q. , Li, F. , Yang, J. , Ma, J. Q. , Cheng, J. , Zhen, J. M. , and Qiao, Z. H. , 2015, “ NiAl Matrix Self-Lubricating Composite at a Wide Temperature Range,” ASME J. Tribol., 137(2), p. 021301. [CrossRef]
Spikes, H. , 2001, “ Tribology Research in the Twenty-First Century,” Tribol. Int., 34(12), pp. 789–799. [CrossRef]
Sliney, H. E. , 1982, “ Solid Lubricant Materials for High Temperatures-A Review,” Tribol. Int., 5, pp. 303–315. [CrossRef]
Erdemir, A. , 2000, “ A Crystal-Chemical Approach to Lubrication by Solid Oxides,” Tribol. Lett., 8, pp. 97–102. [CrossRef]
Peterson, M. B. , Murray, S. F. , and Florek, J. J. , 1959, “ Consideration of Lubricants for Temperatures Above 1000 °F,” Tribol. Trans., 2(2), pp. 225–234. [CrossRef]
Kerkwijk, B. , García, M. , Van, Z. W. , Winnubst, L. , Mulder, E. J. , Schipper, D. J. , and Verweij, H. , 2004, “ Friction Behaviour of Solid Oxide Lubricants as Second Phase in α-Al2O3 and Stabilised ZrO2 Composites,” Wear, 256(1–2), pp. 182–189. [CrossRef]
Ran, S. , Winnubst, L. , Blank, D. H. A. , Pasaribu, H. R. , Sloetjes, J. W. , and Schipper, D. J. , 2009, “ Dry-Sliding Self-Lubricating Ceramics: CuO Doped 3Y-TZP,” Wear, 267(9–10), pp. 1696–1701. [CrossRef]
Pasaribu, H. R. , Sloetjes, J. W. , and Schipper, D. J. , 2003, “ Friction Reduction by Adding Copper Oxide Into Alumina and Zirconia Ceramics,” Wear, 255(1–6), pp. 699–707. [CrossRef]
Pasaribu, H. R. , Reuver, K. M. , Schipper, D. J. , Ran, S. , Wiratha, K. W. , Winnubst, A. J. A. , and Blank, D. H. A. , 2005, “ Environmental Effects on Friction and Wear of Dry Sliding Zirconia and Alumina Ceramics Doped With Copper Oxide,” Int. J. Refract. Met. Hard Mater., 23(4–6), pp. 386–390. [CrossRef]
Wahl, K. J. , Seitzman, L. E. , Bolster, R. N. , Singer, I. L. , and Peterson, M. B. , 1997, “ Ion-Beam Deposited Cu-Mo Coatings as High Temperature Solid Lubricants,” Surf. Coat. Technol., 89(3), pp. 245–251. [CrossRef]
Öztürk, A. , Ezirmik, K. V. , Kazmanlı, K. , Ürgen, M. , Eryılmaz, O. L. , and Erdemir, A. , 2008, “ Comparative Tribological Behaviors of TiN-, CrN- and MoN-Cu Nanocomposite Coatings,” Tribol. Int., 41(1), pp. 49–59. [CrossRef]
Erdemir, A. , 2005, “ A Crystal Chemical Approach to the Formulation of Self-Lubricating Nanocomposite Coatings,” Surf. Coat. Technol., 200(5–6), pp. 1792–1796. [CrossRef]
Donnet, C. , and Erdemir, A. , 2004, “ Solid Lubricant Coatings: Recent Developments and Future Trends,” Tribol. Lett., 17(3), pp. 389–397. [CrossRef]
Zhu, S. Y. , Bi, Q. L. , Niu, M. Y. , Yang, J. , and Liu, W. M. , 2012, “ Tribological Behavior of NiAl Matrix Composites With Addition of Oxides at High Temperatures,” Wear, 274–275, pp. 423–434. [CrossRef]
Kong, L. Q. , Bi, Q. L. , Zhu, S. Y. , Qiao, Z. H. , Yang, J. , and Liu, W. M. , 2014, “ Effect of CuO on Self-Lubricating Properties of ZrO2(Y2O3)-Mo Composites at High Temperatures,” J. Eur. Ceram. Soc., 34(5), pp. 1289–1296. [CrossRef]
Li, S. Z. , Jiang, X. X. , Yin, F. C. , Peterson, M. B. , and Calabrese, S. J. , 1989, “ On Self-Lubricating Behavior of Ni-Cu-Re Alloy at Elevated Temperature,” Chin. J. Mater. Res., 3, pp. 481–486.
Jiang, X. X. , Li, S. Z. , Peterson, M. B. , and Calabrese, S. J. , 1989, “ On Self-Lubricating Behavior of Co-Cu-Re Alloys at Elevated Temperature,” Chin. J. Mater. Res., 3, pp. 487–493.
Peterson, M. B. , Calabrese, S. J. , and Stupp, B. , 1982, “ Lubrication With Naturally Occurring Double Oxide Films,” Final Report, ONR Contract No. N00014-82-C-0247.
Peterson, M. B. , Calabrese, S. J. , Li, S. Z. , and Jiang, X. X. , 1994, “ Friction of Alloys at High Temperature,” J. Mater. Sci. Technol., 10(5), pp. 313–320.
Pauschitz, A. , Roy, M. , and Franek, F. , 2008, “ Mechanisms of Sliding Wear of Metals and Alloys at Elevated Temperatures,” Tribol. Int., 41(7), pp. 584–602. [CrossRef]
Stott, F. H. , 2002, “ High-Temperature Sliding Wear of Metals,” Tribol. Int., 35(8), pp. 489–495. [CrossRef]
Huai, K. W. , Guo, J. T. , Gao, Q. , Li, H. T. , and Yang, R. , 2007, “ Microstructure and Mechanical Behavior of NiAl-Based Alloy Prepared by Powder Metallurgical Route,” Intermetallics, 15(5–6), pp. 749–752. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

XRD spectrum of CU25

Grahic Jump Location
Fig. 2

FESEM images show elemental distribution of CU25 (Ni, Al, Cr, Mo, Cu, and O)

Grahic Jump Location
Fig. 3

Curves of the evolution of friction coefficients of the samples with sliding time at different temperatures: (a) and (b) frictional curves of CU15 at 20, 600, 800, and 1000 °C; (c) and (d) frictional curves of CU20 at 20, 600, 800, and 1000 °C; (e) and (f) frictional curves of CU25 at 20, 600, 800, and 1000 °C

Grahic Jump Location
Fig. 4

Variation of wear rates of the samples with addition of different CuO content at different temperatures

Grahic Jump Location
Fig. 5

Worn surfaces of CU15 at different temperatures

Grahic Jump Location
Fig. 6

Worn surfaces of CU20 at different temperatures

Grahic Jump Location
Fig. 7

Worn surfaces of CU25 at different temperatures

Grahic Jump Location
Fig. 8

Cross sections of CU25 after wear at 800 °C (a) and 1000 °C (b)

Grahic Jump Location
Fig. 9

XPS results of worn surfaces of CU25 at different temperatures

Grahic Jump Location
Fig. 10

Worn surfaces of the coupled Si3N4 ceramic balls at different temperatures: 20 °C (a) and 600 °C (b), 800 °C (c), and 1000 °C (d)

Grahic Jump Location
Fig. 11

EDS results of worn surfaces of the coupled Si3N4 ball at different temperatures: 800 °C (a) and 1000 °C (b)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In