Elastohydrodynamic lubrication (EHL) analysis in finite line contacts is usually modeled by a finite-length roller contacting with a half-space, which ignores effect of the two free boundaries existing in many applications such as gears or roller bearings. This paper presents a semi-analytical method, involving the overlapping method and matrix formation, for EHL analysis in the finite line contact problem to consider the effect of two free end surfaces. Three half-spaces with mirrored loads to be solved are overlapped to cancel out the stresses at expected surfaces, and three matrices can be obtained and reused for the same finite-length space. The isothermal Reynolds equation is solved to obtain the pressure distribution and the fast Fourier transform (FFT) is used to speed up the elastic deformation and stress related calculation. Different line contact situations, including straight rollers, tapered rollers, and Lundberg profile rollers, are discussed to explore the effect of free end surfaces.