0
Research Papers: Hydrodynamic Lubrication

Nonlinear Effects of Surface Texturing on the Performance of Journal Bearings in Flexible Rotordynamic Systems

[+] Author and Article Information
Jocelyn Rebufa

LTDS, Laboratoire de Tribologie et de
Dynamique des Systèmes,
Ecole Centrale de Lyon,
Ecully 69130, France;
CEA, Commissariat à l’énergie atomique
et aux énergies alternatives,
DEN–DTEC,
Bagnols sur Cèze 30200, France
e-mail: jrebufa@ec-lyon.fr

Fabrice Thouverez

Professor
LTDS, Laboratoire de Tribologie
et de Dynamique des Systèmes,
Ecole Centrale de Lyon,
Ecully 69130, France
e-mail: fabrice.thouverez@ec-lyon.fr

Erick Le Guyadec

CEA, Commissariat à l’énergie atomique
et aux énergies alternatives,
DEN–DTEC,
Bagnols sur Cèze 30200, France
e-mail: erick.leguyadec@cea.fr

Denis Mazuyer

Professor
LTDS, Laboratoire de Tribologie
et de Dynamique des Systèmes,
Ecole Centrale de Lyon,
Ecully 69130, France
e-mail: denis.mazuyer@ec-lyon.fr

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received April 14, 2016; final manuscript received August 25, 2016; published online May 26, 2017. Assoc. Editor: Joichi Sugimura.

J. Tribol 139(5), 051705 (May 26, 2017) (9 pages) Paper No: TRIB-16-1128; doi: 10.1115/1.4034765 History: Received April 14, 2016; Revised August 25, 2016

A dynamic model of a rotating shaft on two textured hydrodynamic journal bearings is presented. The hydrodynamic mean pressure is computed using multiscale periodic homogenization and is projected on a flexible shaft with internal damping. Harmonic balance method (HBM) is used to study the limit cycles of unbalance response of the coupled system discretized by finite element method (FEM). Stability is analyzed with Floquet multipliers computation. An example of an isotropic texturing pattern representing laser dimples on a lightweight rotor is analyzed. Vibration amplitude and stability zone are compared with plain bearing lubrication. It is shown in an example that full surface texturing leads to relatively higher vibration amplitude compared to plain bearings.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Fig. 1

Macroscopic domain and elementary cell

Grahic Jump Location
Fig. 2

Example of Gaussian periodic pattern

Grahic Jump Location
Fig. 3

Local resolution of the field χ3

Grahic Jump Location
Fig. 4

Local resolution of the field χ3

Grahic Jump Location
Fig. 5

Schematic diagram of the system

Grahic Jump Location
Fig. 6

Amplitude of the synchronous motion at the node 6 (Fig. 5) for an unbalance of 2 × 7 mg cm for textured bearing, plain bearings with radial clearances of Cr and γCr—the solid lines represent the stable points, and the dashed lines represent the unstable points

Grahic Jump Location
Fig. 7

Stability zone depending on the unbalance parameter against the shaft rotating speed

Grahic Jump Location
Fig. 8

Vibration amplitude of the shaft extremity (node 6) for the boundary stable system against the shaft rotating speed

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In