Research Papers: Elastohydrodynamic Lubrication

Coupling Strategies for Finite Element Modeling of Thermal Elastohydrodynamic Lubrication Problems

[+] Author and Article Information
W. Habchi

Department of Industrial and
Mechanical Engineering,
Lebanese American University,
Byblos, Lebanon
e-mail: wassim.habchi@lau.edu.lb

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received May 3, 2016; final manuscript received September 24, 2016; published online April 4, 2017. Assoc. Editor: Xiaolan Ai.

J. Tribol 139(4), 041501 (Apr 04, 2017) (12 pages) Paper No: TRIB-16-1149; doi: 10.1115/1.4034956 History: Received May 03, 2016; Revised September 24, 2016

This paper investigates coupling strategies for finite element modeling (FEM) of thermal elastohydrodynamic lubrication (TEHL) problems. The TEHL problem involves a strong coupling between several physics: solid mechanics, fluid mechanics, and heat transfer. Customarily, this problem is split into two parts (elastohydrodynamic (EHD) and thermal) and the two problems are solved separately while an iterative procedure is established between their respective solutions. This weak coupling strategy involves a loss of information, as each problem is not made intimately aware of the evolution of the other problem's solution during the resolution procedure. This typically leads to slow convergence rates. The current work offers a full coupling strategy for the TEHL problem, i.e., both the EHD and thermal parts are solved simultaneously in a monolithic system. The system of equations is generated from a finite element discretization of the governing field variables: hydrodynamic pressure, solids elastic deformation, and temperature. The full coupling strategy prevents any loss of information during the resolution procedure leading to very fast convergence rates (solution is attained within a few iterations only). The performance of the full coupling strategy is compared to that of different weak coupling strategies. Out of simplicity, only steady-state line contacts are considered in this work. Nevertheless, the proposed methodology, results, and findings are of a general nature and may be extrapolated to circular or elliptical contacts under steady-state or transient conditions.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Cheng, H. S. , and Sternlicht, B. , 1965, “ A Numerical Solution for the Pressure, Temperature and Film Thickness Between Two Infinitely Long, Lubricated Rolling and Sliding Cylinders, Under Heavy Loads,” ASME J. Basic. Eng., 87(3), pp. 695–707. [CrossRef]
Cheng, H. S. , 1965, “ A Refined Solution to the Thermal-Elastohydrodynamic Lubrication of Rolling and Sliding Cylinders,” ASLE Trans., 8(4), pp. 397–410.
Zhu, D. , and Wen, S. , 1985, “ A Full Numerical Solution for the Thermo-Elastohydrodynamic Problem in Elliptical Contacts,” ASME J. Tribol., 106(2), pp. 246–254. [CrossRef]
Kim, K. H. , and Sadeghi, F. , 1992, “ Three-Dimensional Temperature Distribution in EHD Lubrication—Part I: Circular Contact,” ASME J. Tribol., 114(1), pp. 32–41. [CrossRef]
Guo, F. , Yang, P. , and Qu, S. , 2001, “ On the Theory of Thermal Elastohydrodynamic Lubrication at High Slide-Roll Ratios—Circular Glass-Steel Contact Solution at Opposite Sliding,” ASME J. Tribol., 123(4), pp. 816–821. [CrossRef]
Liu, X. , Jiang, M. , Yang, P. , and Kaneta, M. , 2005, “ Non-Newtonian Thermal Analyses of Point EHL Contacts Using the Eyring Model,” ASME J. Tribol., 127(1), pp. 70–81. [CrossRef]
Sharif, K. J. , Kong, S. , Evans, H. P. , and Snidle, R. W. , 2001, “ Contact and Elastohydrodynamic Analysis of Worm Gears—Part 1: Theoretical Formulation,” Proc. Inst. Mech. Eng. Part C, 215(7), pp. 817–830. [CrossRef]
Carslaw, H. S. , and Jaeger, J. C. , 1959, Conduction of Heat in Solids, Oxford University Press, Oxford, UK.
Blok, H. , 1963, “ The Flash Temperature Concept,” Wear, 6(6), pp. 484–483. [CrossRef]
Hartinger, M. , Dumont, M.-L. , Ioannides, S. , Gosman, D. , and Spikes, H. , 2008, “ CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact,” ASME J. Tribol., 130(4), p. 041503. [CrossRef]
Salehizadeh, H. , and Saka, N. , 1991, “ Thermal Non-Newtonian Elastohydrodynamic Lubrication of Rolling Line Contacts,” ASME J. Tribol., 113(3), pp. 481–491. [CrossRef]
Wolff, R. , and Kubo, A. , 1994, “ The Application of Newton–Raphson Method to Thermal Elastohydrodynamic Lubrication of Line Contacts,” ASME J. Tribol., 116(4), pp. 733–740. [CrossRef]
Kazama, T. , Ehret, P. , and Taylor, C. M. , 2001, “ On the Effects of the Temperature Profile Approximation in the Thermal Newtonian Solutions of Elastohydrodynamic Line Contacts,” Proc. Inst. Mech. Eng. Part J, 215(1), pp. 109–120. [CrossRef]
Jiang, X. , Wong, P. L. , and Zhang, Z. , 1995, “ Thermal Non-Newtonian EHL Analysis of Rib-Roller End Contact in Tapered Roller Bearings,” ASME J. Tribol., 117(4), pp. 646–654. [CrossRef]
Lee, R. T. , Hsu, C. H. , and Kuo, W. F. , 1995, “ Multilevel Solution for Thermal Elastohydrodynamic Lubrication of Rolling-Sliding Circular Contacts,” Tribol. Int., 28(8), pp. 541–552. [CrossRef]
Kim, H. J. , Ehret, P. , Dowson, D. , and Taylor, C. M. , 2001, “ Thermal Elastohydrodynamic Analysis of Circular Contacts—Part 1: Newtonian Model,” Proc. Inst. Mech. Eng. Part J, 215(4), pp. 339–352.
Kim, H. J. , Ehret, P. , Dowson, D. , and Taylor, C. M. , 2001, “ Thermal Elastohydrodynamic Analysis of Circular Contacts—Part 2: Non-Newtonian Model,” Proc. Inst. Mech. Eng. Part J, 215(4), pp. 353–362. [CrossRef]
Kaneta, M. , Shigeta, T. , and Yang, P. , 2006, “ Film Pressure Distributions in Point Contacts Predicted by Thermal EHL Analysis,” Tribol. Int., 39(8), pp. 812–819. [CrossRef]
Wang, Y. , Li, H. , Tong, J. , and Yang, P. , 2004, “ Transient Thermoelastohydrodynamic Lubrication Analysis of an Involute Spur Gear,” Tribol. Int., 37(10), pp. 773–782. [CrossRef]
Habchi, W. , Eyheramendy, D. , Bair, S. , Vergne, P. , and Morales-Espejel, G. E. , 2008, “ Thermal Elastohydrodynamic Lubrication of Point Contacts Using a Newtonian/Generalized Newtonian Lubricant,” Tribol. Lett., 30(1), pp. 41–52. [CrossRef]
Habchi, W. , Eyheramendy, D. , Vergne, P. , and Morales-Espejel, G. E. , 2012, “ Stabilized Fully-Coupled Finite Elements for Elastohydrodynamic Lubrication Problems,” Adv. Eng. Software, 46(1), pp. 4–18. [CrossRef]
Björling, M. , Habchi, W. , Bair, S. , Larsson, R. , and Marklund, P. , 2014, “ Friction Reduction in Elastohydrodynamic Contacts by Thin Layer Thermal Insulation,” Tribol. Lett., 53(2), pp. 477–486. [CrossRef]
Habchi, W. , 2014, “ A Numerical Model for the Solution of Thermal Elastohydrodynamic Lubrication in Coated Circular Contacts,” Tribol. Int., 73, pp. 57–68. [CrossRef]
Bruyere, V. , Fillot, N. , Morales-Espejel, G. E. , and Vergne, P. , 2012, “ Computational Fluid Dynamics and Full Elasticity Model for Sliding Line Thermal Elastohydrodynamic Contacts,” Tribol. Int., 46(1), pp. 3–13. [CrossRef]
Habchi, W. , Eyheramendy, D. , Vergne, P. , and Morales-Espejel, G. E. , 2008, “ A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem,” ASME J. Tribol., 130(2), p. 021501. [CrossRef]
Oh, K. P. , and Rohde, S. M. , 1977, “ Numerical Solution of the Point Contact Problem Using the Finite Element Method,” Int. J. Numer. Methods Eng., 11(10), pp. 1507–1518. [CrossRef]
Rohde, S. M. , and Oh, K. P. , 1975, “ A Unified Treatment of Thick and Thin Film Elastohydrodynamic Problems by Using Higher Order Element Methods,” Proc. R. Soc. London Part A, 343(1634), pp. 315–331. [CrossRef]
Houpert, L. G. , and Hamrock, B. J. , 1986, “ Fast Approach for Calculating Film Thicknesses and Pressures in Elastohydrodynamically Lubricated Contacts at High Loads,” ASME J. Tribol., 108(3), pp. 411–420. [CrossRef]
Hsiao, H. S. S. , Hamrock, B. J. , and Tripp, J. H. , 1998, “ Finite Element System Approach to EHL of Elliptical Contacts —Part I: Isothermal Circular Non-Newtonian Formulation,” ASME J. Tribol., 120(4), pp. 695–704. [CrossRef]
Evans, H. P. , and Hughes, T. G. , 2000, “ Evaluation of Deflection in Semi-Infinite Bodies by a Differential Method,” Proc. Inst. Mech. Eng. Part C, 214(4), pp. 563–584. [CrossRef]
Holmes, M. J. A. , Evans, H. P. , Hughes, T. G. , and Snidle, R. W. , 2003, “ Transient Elastohydrodynamic Point Contact Analysis Using a New Coupled Differential Deflection Method—Part I: Theory and Validation,” Proc. Inst. Mech. Eng. Part J, 217(4), pp. 289–303. [CrossRef]
Wu, S. R. , 1986, “ A Penalty Formulation and Numerical Approximation of the Reynolds–Hertz Problem of Elastohydrodynamic Lubrication,” Int. J. Eng. Sci., 24(6), pp. 1001–1013. [CrossRef]
Yang, P. , and Wen, S. , 1990, “ A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication,” ASME J. Tribol., 112(4), pp. 631–636. [CrossRef]
Bair, S. , 2007, High Pressure Rheology for Quantitative Elastohydrodynamics, Elsevier Science, Amsterdam, The Netherlands.
Roelands, C. J. A. , 1966, “ Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils,” Ph.D. thesis, Technische Hogeschool Delft, Delft, The Netherlands.
Dowson, D. , and Higginson, G. R. , 1966, Elastohydrodynamic Lubrication: The Fundamental of Roller and Gear Lubrication, Oxford, Pergamon, Turkey.
Brooks, A. N. , and Hughes, T. J. R. , 1982, “ Streamline-Upwind/Petrov–Galerkin Formulations for Convective Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations,” Comput. Methods Appl. Mech. Eng., 32(1–3), pp.199–259. [CrossRef]
Hughes, T. J. R. , Franca, L. P. , and Hulbert, G. M. , 1989, “ A New Finite Element Formulation for Computational Fluid Dynamics—VII: The Galerkin-Least-Squares Method for Advective-Diffusive Equations,” Comput. Methods Appl. Mech. Eng., 73(2), pp. 173–189. [CrossRef]
Galeão, A. C. , Almeida, R. C. , Malta, S. M. C. , and Loula, A. F. D. , 2004, “ Finite Element Analysis of Convection Dominated Reaction-Diffusion Problems,” Appl. Numer. Math., 48(2), pp. 205–222. [CrossRef]
Davis, T. A. , and Duff, I. S. , 1997, “ An Unsymmetric-Pattern Multifrontal Method for Sparse LU Factorization,” SIAM J. Matrix Anal. Appl., 18(1), pp. 140–158. [CrossRef]
Deuflhard, P. , 2004, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, Springer, Berlin/Heidelberg.
Habchi, W. , Vergne, P. , Bair, S. , Andersson, O. , Eyheramendy, D. , and Morales-Espejel, G. E. , 2010, “ Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behavior of Circular TEHD Contacts,” Tribol. Int., 43(10), pp. 1842–1850. [CrossRef]
Björling, M. , Habchi, W. , Bair, S. , Larsson, R. , and Marklund, P. , 2013, “ Towards the True Prediction of EHL Friction,” Tribol. Int., 66, pp. 19–26. [CrossRef]


Grahic Jump Location
Fig. 1

Geometry of a line contact

Grahic Jump Location
Fig. 2

Computational domain of the EHL part

Grahic Jump Location
Fig. 3

Computational domain of the thermal part

Grahic Jump Location
Fig. 4

“Extra coarse” mesh case for the EHL domain (a) and the thermal domain (b)

Grahic Jump Location
Fig. 5

Film thickness and temperature convergence with respect to mesh size. Left: moderately loaded case (ph = 0.7 GPa) and right: highly loaded case (ph = 2.2 GPa).

Grahic Jump Location
Fig. 6

Dimensionless pressure and film thickness distribution (left), temperature rise over the plane's surface (Z = 0), the midlayer of the lubricant film (Z = 0.5), and the cylinder's surface (Z = 1) (middle) and dimensionless lubricant shear stress distribution on the plane's surface over the contact width (right) for the typical test case

Grahic Jump Location
Fig. 7

Flowcharts of weak coupling strategies



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In