0
Research Papers: Friction and Wear

Abrasive Wear of Polymer Fibers Investigated by Reciprocal Scratching in an Atomic Force Microscope

[+] Author and Article Information
Michael Giordano, Steven Schmid

Department of Aerospace and
Mechanical Engineering,
University of Notre Dame,
Notre Dame, IN 46556

Mohammadreza Arjmandi

Department of Mechanical Engineering,
Auckland University of Technology,
Auckland 1010, New Zealand

Maziar Ramezani

Department of Mechanical Engineering,
Auckland University of Technology,
Auckland 1010, New Zealand
e-mail: maziar.ramezani@aut.ac.nz

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received April 16, 2017; final manuscript received August 9, 2017; published online October 4, 2017. Assoc. Editor: Zhong Min Jin.

J. Tribol 140(2), 021604 (Oct 04, 2017) (10 pages) Paper No: TRIB-17-1139; doi: 10.1115/1.4037728 History: Received April 16, 2017; Revised August 09, 2017

Three-dimensional (3D) woven fabrics have been considered by biomedical researchers to be used as load-bearing surfaces in joint and ligament replacements. In this regard, wear is a crucial phenomenon that determines material failure as well as biological response of body to wear debris. The current study evaluates various microscale screening methods with the aid of atomic force microscopy (AFM) for biocompatible polymer fibers that are used in 3D woven fabrics. Fibers in mono- and multi-filament forms were subjected to indentation, scratching, and line wear testing in dry and soaked conditions, and the effect of key parameters such as applied normal load, sliding velocity, and number of wear cycles was investigated. The area of worn material was determined by geometric approximation superimposed on the measured residual scratch of line wear. Moisture was found to lower the indentation hardness of some fibers while increasing the hardness of others. Line wear results clearly suggest ultrahigh molecular weight polyethylene (UHMWPE) to be the primary material for further investigation and that monofilament fibers should be avoided.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Moutos, F. T. , Freed, L. E. , and Guilak, F. , 2007, “ A Biomimetic Three-Dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage,” Nat. Mater., 6(2), pp. 162–167. [CrossRef] [PubMed]
Kellomäki, M. , Laine, K. , Ellä, V. , and Annala, T. , 2015, “ Bioabsorbable Fabrics for Musculoskeletal Scaffolds,” Biomedical Textiles for Orthopaedic and Surgical Applications: Fundamentals, Applications and Tissue Engineering, Woodhead Publishing, Waltham, MA, pp. 67–90. [CrossRef]
Ahn, H. , Kim, K. J. , Park, S. Y. , Huh, J. E. , Kim, H. J. , and Yu, W. R. , 2014, “ 3D Braid Scaffolds for Regeneration of Articular Cartilage,” J. Mech. Behav. Biomed. Mater., 34, pp. 37–46. [CrossRef] [PubMed]
Akbari, M. , Tamayol, A. , Bagherifard, S. , Serex, L. , Mostafalu, P. , Faramarzi, N. , Mohammadi, M. H. , and Khademhosseini, A. , 2016, “ Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving,” Adv. Healthcare Mater., 5(7), pp. 751–766. [CrossRef]
Balter, M. , 2009, “ Clothes Make the (Hu) Man,” Science, 325(5946), pp. 1329–1329. [CrossRef] [PubMed]
Kvavadze, E. , Bar-Yosef, O. , Belfer-Cohen, A. , Boaretto, E. , Jakeli, N. , Matskevich, Z. , and Meshveliani, T. , 2009, “ 30,000-Year-Old Wild Flax Fibers,” Science, 325(5946), pp. 1359–1359. [CrossRef] [PubMed]
Mouritz, A. P. , Bannister, M. K. , Falzon, P. J. , and Leong, K. H. , 1999, “ Review of Applications for Advanced Three-Dimensional Fibre Textile Composites,” Composites, Part A, 30(12), pp. 1445–1461. [CrossRef]
Zhu, B. , Yu, T. , and Tao, X. , 2007, “ Large Deformation and Slippage Mechanism of Plain Woven Composite in Bias Extension,” Composites, Part A, 38(8), pp. 1821–1828. [CrossRef]
Bolton, C. W. , and Bruchman, W. C. , 1985, “ The GORE-TEXTM Expanded Polytetrafluoroethylene Prosthetic Ligament an In Vitro and In Vivo Evaluation,” Clin. Orthop. Relat. Res., 196, pp. 202–213. http://journals.lww.com/corr/Abstract/1985/06000/The_GORE_TEXTM_Expanded_Polytetrafluoroethylene.27.aspx
Bruchman, W. , Bain, J. , and Bain, J. , 1988, The Crucial Ligaments, J. Feagin , ed., Churchill Livingstone, New York, pp. 507–515.
Collins, H. , 1988, Prosthetic Ligament Reconstruction of the Knee, M. Friedman , and R. Ferkel , eds., W.B. Saunders, Philadelphia, PA.
Fujikawa, K. , 1988, “ Clinical Study of Anterior Cruciate Ligament Reconstruction With the Leeds-Keio Artificial Ligament,” Prosthetic Ligament Reconstruction of the Knee, W.B. Saunders, Philadelphia, PA, pp. 132–139.
Kennedy, J. C. , 1983, “ Application of Prosthetics to Anterior Cruciate Ligament Reconstruction and Repair,” Clin. Orthop. Relat. Res., 172, pp. 125–128. http://journals.lww.com/corr/Citation/1983/01000/Application_of_Prosthetics_to_Anterior_Cruciate.24.aspx
Kennedy, J. C. , Roth, J. , Mendenhall, H. , and Sanford, J. , 1980, “ Presidential Address Intraarticular Replacement in the Anterior Cruciate Ligament-Deficient Knee,” Am. J. Sports Med., 8(1), pp. 1–8. [CrossRef] [PubMed]
McPherson, G. , Mendenhall, H. , Gibbons, D. , Plenk, H. , Rottmann, W. , Sanford, J. , Kennedy, J. , and Roth, J. , 1985, “ Experimental Mechanical and Histologic Evaluation of the Kennedy Ligament Augmentation Device,” Clin. Orthop. Relat. Res., 196, pp. 186–195. http://journals.lww.com/corr/Abstract/1985/06000/Experimental_Mechanical_and_Histologic_Evaluation.25.aspx
Seedhom, B. , 1988, Prosthetic Ligament Reconstruction of the Knee, M. Friedman and M. Ferkel , eds., W.B. Saunders, Philadelphia, PA.
Schmalzried, T. P. , and Callaghan, J. J. , 1999, “ Current Concepts Review-Wear in Total Hip and Knee Replacements,” J. Bone Jt. Surg. Am., 81(1), pp. 115–136. [CrossRef]
Binnig, G. , Quate, C. F. , and Gerber, C. , 1986, “ Atomic Force Microscope,” Phys. Rev. Lett., 56(9), pp. 930–933. [CrossRef] [PubMed]
Chilamakuri, S. , and Bhushan, B. , 1998, “ Contact Analysis of Non-Gaussian Random Surfaces,” Proc. Inst. Mech. Eng., Part J, 212(1), pp. 19–32. [CrossRef]
Warren, O. L. , and Wyrobek, T. J. , 2004, “ Nanomechanical Property Screening of Combinatorial Thin-Film Libraries by Nanoindentation,” Meas. Sci. Technol., 16(1), pp. 100–110. [CrossRef]
Tabor, D. , 2000, The Hardness of Metals, Oxford University Press, New York.
Giordano, M. A. , and Schmid, S. R. , 2010, “ Application of Contact Mode AFM to Manufacturing Processes,” Scanning Probe Microscopy in Nanoscience and Nanotechnology, Springer-Verlang, Berlin, pp. 867–914. [CrossRef]
Cleveland, J. , Manne, S. , Bocek, D. , and Hansma, P. , 1993, “ A Nondestructive Method for Determining the Spring Constant of Cantilevers for Scanning Force Microscopy,” Rev. Sci. Instrum., 64(2), pp. 403–405. [CrossRef]
Marti, O. , Colchero, J. , and Mlynek, J. , 1990, “ Combined Scanning Force and Friction Microscopy of Mica,” Nanotechnology, 1(2), pp. 141–144. [CrossRef]
Sader, J. , 1998, “ Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Applications to the Atomic Force Microscope,” J. Appl. Phys., 84(1), pp. 64–76. [CrossRef]
Sader, J. E. , 1995, “ Parallel Beam Approximation for V-Shaped Atomic Force Microscope Cantilevers,” Rev. Sci. Instrum., 66(9), pp. 4583–4587. [CrossRef]
Sader, J. E. , Chon, J. W. , and Mulvaney, P. , 1999, “ Calibration of Rectangular Atomic Force Microscope Cantilevers,” Rev. Sci. Instrum., 70(10), pp. 3967–3969. [CrossRef]
Senden, T. , and Ducker, W. , 1994, “ Experimental Determination of Spring Constants in Atomic Force Microscopy,” Langmuir, 10(4), pp. 1003–1004. [CrossRef]
Hazel, J. , and Tsukruk, V. , 1998, “ Friction Force Microscopy Measurements: Normal and Torsional Spring Constants for V-Shaped Cantilevers,” ASME J. Tribol., 120(4), pp. 814–819. [CrossRef]
Hazel, J. L. , and Tsukruk, V. V. , 1999, “ Spring Constants of Composite Ceramic/Gold Cantilevers for Scanning Probe Microscopy,” Thin Solid Films, 339(1), pp. 249–257. [CrossRef]
Neumeister, J. M. , and Ducker, W. A. , 1994, “ Lateral, Normal, and Longitudinal Spring Constants of Atomic Force Microscopy Cantilevers,” Rev. Sci. Instrum., 65(8), pp. 2527–2531. [CrossRef]
Stark, R. W. , Drobek, T. , and Heckl, W. M. , 2001, “ Thermomechanical Noise of a Free v-Shaped Cantilever for Atomic-Force Microscopy,” Ultramicroscopy, 86(1), pp. 207–215. [CrossRef] [PubMed]
Aksu, S. B. , and Turner, J. A. , 2007, “ Calibration of Atomic Force Microscope Cantilevers Using Piezolevers,” Rev. Sci. Instrum., 78(4), p. 043704. [CrossRef] [PubMed]
Butt, H. J. , Siedle, P. , Seifert, K. , Fendler, K. , Seeger, T. , Bamberg, E. , Weisenhorn, A. , Goldie, K. , and Engel, A. , 1993, “ Scan Speed Limit in Atomic Force Microscopy,” J. Microsc., 169(1), pp. 75–84. [CrossRef]
Cumpson, P. J. , Zhdan, P. , and Hedley, J. , 2004, “ Calibration of AFM Cantilever Stiffness: A Microfabricated Array of Reflective Springs,” Ultramicroscopy, 100(3), pp. 241–251. [CrossRef] [PubMed]
Florin, E. , Moy, V. , and Gaub, H. , 1994, “ Adhesion Forces Between Individual Ligand-Receptor Pairs,” Science, 264(5157), pp. 415–417. [CrossRef] [PubMed]
Gibson, C. T. , Watson, G. S. , and Myhra, S. , 1996, “ Determination of the Spring Constants of Probes for Force Microscopy/Spectroscopy,” Nanotechnology, 7(3), pp. 259–262. [CrossRef]
Holbery, J. , Eden, V. , Sarikaya, M. , and Fisher, R. , 2000, “ Experimental Determination of Scanning Probe Microscope Cantilever Spring Constants Utilizing a Nanoindentation Apparatus,” Rev. Sci. Instrum., 71(10), pp. 3769–3776. [CrossRef]
Torii, A. , Sasaki, M. , Hane, K. , and Okuma, S. , 1996, “ A Method for Determining the Spring Constant of Cantilevers for Atomic Force Microscopy,” Meas. Sci. Technol., 7(2), pp. 179–184. [CrossRef]
Tortonese, M. , and Kirk, M. , 1997, “ Characterization of Application-Specific Probes for SPMs,” Proc. SPIE, 3009, pp. 53–60.
Gibson, C. T. , Weeks, B. L. , Lee, J. R. , Abell, C. , and Rayment, T. , 2001, “ A Nondestructive Technique for Determining the Spring Constant of Atomic Force Microscope Cantilevers,” Rev. Sci. Instrum., 72(5), pp. 2340–2343. [CrossRef]
Jing, G. , Ma, J. , and Yu, D. , 2007, “ Calibration of the Spring Constant of AFM Cantilever,” J. Electron Microsc., 56(1), pp. 21–25. [CrossRef]
Hutter, J. L. , and Bechhoefer, J. , 1993, “ Calibration of Atomic-Force Microscope Tips,” Rev. Sci. Instrum., 64(7), pp. 1868–1873. [CrossRef]
Ruan, J.-A. , and Bhushan, B. , 1993, “ Atomic-Scale Friction Measurements Using Friction Force Microscopy—Part I-General Principles and New Measurement Techniques,” ASME J. Tribol., 116(2), pp. 378–388.
Burnham, N. , Chen, X. , Hodges, C. , Matei, G. , Thoreson, E. , Roberts, C. , Davies, M. , and Tendler, S. , 2002, “ Comparison of Calibration Methods for Atomic-Force Microscopy Cantilevers,” Nanotechnology, 14(1), pp. 1–6. [CrossRef]
Gibson, C. , Watson, G. S. , and Myhra, S. , 1997, “ Scanning Force Microscopy—Calibrative Procedures for ‘Best Practice,’” Scanning, 19(8), pp. 564–581. [CrossRef]
Gibson, C. T. , Smith, D. A. , and Roberts, C. J. , 2005, “ Calibration of Silicon Atomic Force Microscope Cantilevers,” Nanotechnology, 16(2), pp. 234–238. [CrossRef] [PubMed]
Meyer, E. , 1908, “ Untersuchungen über Härteprüfung und Härte Brinell Methoden,” Z. Ver. Dtsch. Ing., 52, pp. 82–85.
McHargue, C. J. , 1997, “ Surface Mechanical Properties Using Nanoindentation,” Micro/Nanotribology and Its Applications, Springer, Knoxville, TN, pp. 467–492. [CrossRef]
Devathire, M. , Delamare, F. , and Felder, E. , 1984, “ An Upper Bound Model of Ploughing by a Pyramidal Indenter,” Wear, 66(1), pp. 51–64.
Azarkhin, A. , and Richmond, O. , 1989, “ A Generalization of the Upper Bound Method With Particular Reference to the Problem of a Ploughing Indenter,” ASME J. Appl. Mech., 56(1), pp. 10–14. [CrossRef]
Azarkhin, A. , and Richmond, O. , 1990, “ On Friction of Ploughing by Rigid Asperities in the Presence of Straining—Upper Bound Method,” ASME J. Tribol., 112(2), pp. 324–329. [CrossRef]
Azarkhin, A. , and Richmond, O. , 1991, “ Extension of the Upper Bound Method to Include Estimation of Stresses,” ASME J. Appl. Mech., 58(2), pp. 493–499. [CrossRef]
Azarkhin, A. , and Richmond, O. , 1992, “ A Model of Ploughing by a Pyramidal Indenter—Upper Bound Method for Stress-Free Surfaces,” Wear, 157(2), pp. 409–418. [CrossRef]
Azarkhin, A. , Richmond, O. , and Devenpeck, M. , 1996, “ An Approximate Model of Surface Ploughing by a Rotating Disc and Other Indenters,” Wear, 192(1), pp. 157–164. [CrossRef]
Azarkhin, A. , and Devenpeck, M. , 1997, “ Enhanced Model of a Plowing Asperity,” Wear, 206(1), pp. 147–155. [CrossRef]
Hector, L. G. , and Schmid, S. R. , 1998, “ Simulation of Asperity Plowing in an Atomic Force Microscope Part 1: Experimental and Theoretical Methods,” Wear, 215(1), pp. 247–256. [CrossRef]
Koinkar, V. N. , and Bhushan, B. , 1996, “ Microtribological Studies of Unlubricated and Lubricated Surfaces Using Atomic Force/Friction Force Microscopy,” J. Vac. Sci. Technol., A, 14(4), pp. 2378–2391. [CrossRef]
Opalka, S. M. , Hector, L. G. , Schmid, S. R. , Reich, R. A. , and Epp, J. M. , 1999, “ Boundary Additive Effect on Abrasive Wear During Single Asperity Plowing of a 3004 Aluminum Alloy,” ASME J. Tribol., 121(2), pp. 384–393. [CrossRef]
Bhushan, B. , and Koinkar, V. N. , 1994, “ Nanoindentation Hardness Measurements Using Atomic Force Microscopy,” Appl. Phys. Lett., 64(13), pp. 1653–1655. [CrossRef]
Bhushan, B. , 1998, Handbook of Micro/Nano Tribology, CRC Press, Boca Raton, FL. [CrossRef]
Frank, F. , and Singleton, R. , 1964, “ A Study of Factors Influencing the Tensile Fatigue Behavior of Yarns,” Text. Res. J., 34(1), pp. 11–19. [CrossRef]
Ukponmwan, J. O. , 1993, “ Compressibility Analysis of Wet Abraded Woven Fabrics,” J. Test. Eval., 21(4), pp. 312–321. [CrossRef]
Altaf, K. , Ashcroft, I. A. , and Hague, R. , 2012, “ Modelling the Effect of Moisture on the Depth Sensing Indentation Response of a Stereolithography Polymer,” Comput. Mater. Sci., 52(1), pp. 112–117. [CrossRef]
Konnerth, J. , Stöckel, F. , Müller, U. , and Gindl, W. , 2010, “ Elastic Properties of Adhesive Polymers. III. Adhesive Polymer Films Under Dry and Wet Conditions Characterized by Means of Nanoindentation,” J. Appl. Polym. Sci., 118(3), pp. 1331–1334.
Laraia, K. , Leone, N. , MacDonald, R. , and Blanchet, T. A. , 2006, “ Effect of Water and Serum Absorption on Wear of Unirradiated and Crosslinked UHMWPE Orthopedic Bearing Materials,” Tribol. Trans., 49(3), pp. 338–346. [CrossRef]
Rajeesh, K. , Gnanamoorthy, R. , and Velmurugan, R. , 2010, “ Effect of Humidity on the Indentation Hardness and Flexural Fatigue Behavior of Polyamide 6 Nanocomposite,” Mater. Sci. Eng.: A, 527(12), pp. 2826–2830. [CrossRef]
Shi, X. , and Croll, S. G. , 2011, “ Reduced Indentation Recovery Temperature at the Surface of a Crosslinked Epoxy Coating in Humid Conditions,” J. Coat. Technol. Res., 8(4), pp. 535–539. [CrossRef]
Rubin, I. I. , 1990, Handbook of Plastic Materials and Technology, Wiley, New York.
Diversified Enterprises, 2017, “ AccuDyne Test. Critical Surface Tension Components,” DIVERSIFIED Enterprises, Claremont, NH, accessed Aug. 30, 2017, https://www.accudynetest.com/polytable_01.html
Young, J. , and Shane, R. , 1985, Materials and Processes, Part B: Processes, Marcel Dekker, New York, p. 772.
Zar, J. H. , 2010, Biostatistical Analysis, Prentice Hall, Englewood Cliffs, NJ.
Friedrich, K. , Sue, H. , Liu, P. , and Almajid, A. , 2011, “ Scratch Resistance of High Performance Polymers,” Tribol. Int., 44(9), pp. 1032–1046. [CrossRef]
Prasad, A. , Dao, M. , and Suresh, S. , 2009, “ Steady-State Frictional Sliding Contact on Surfaces of Plastically Graded Materials,” Acta Mater., 57(2), pp. 511–524. [CrossRef]
Briscoe, B. , Fiori, L. , and Pelillo, E. , 1998, “ Nano-Indentation of Polymeric Surfaces,” J. Phys. D: Appl. Phys., 31(19), pp. 2395–2405. [CrossRef]
Wredenberg, F. , and Larsson, P.-L. , 2007, “ On the Numerics and Correlation of Scratch Testing,” J. Mech. Mater. Struct., 2(3), pp. 573–594. [CrossRef]
Xiang, C. , Sue, H. J. , Chu, J. , and Coleman, B. , 2001, “ Scratch Behavior and Material Property Relationship in Polymers,” J. Polym. Sci., Part B: Polym. Phys., 39(1), pp. 47–59. [CrossRef]
Schmid, S. R. , and Hector, L. G. , 1998, “ Simulation of Asperity Plowing in an Atomic Force Microscope—Part II: Plowing of Aluminum Alloys,” Wear, 215(1), pp. 257–266. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Digital instruments dimension 3100 atomic force microscope used for the experiments in this study (left), and mounted silicon probe for tapping mode use in dry conditions (right)

Grahic Jump Location
Fig. 2

Worn volume left by reciprocating line wear test in polypropylene (PP) after 20 cycles at 350 μN and 20 μm/s and illustration of the geometric approximation for wear area calculation

Grahic Jump Location
Fig. 3

Representative AFM images of (a) depths range from 204 to 101 nm and (b) depths range from 105 to 61 nm indentations and (c) scratch depths range from 52 to 30 nm and (d) scratch depths range from 150 to 110 nm scratches performed (material, environment, load): (a) PP, dry, 260 μN, (b) PET, dry, 300 μN, (c) PEEK, fluid, 210 μN, and (d) PET, soaked, 260 μN

Grahic Jump Location
Fig. 4

(a) Tapping-mode AFM image and (b) averaged surface profile identifying the geometric values for input into the plowing models of a plow track in a PEEK fiber performed under dry conditions with an applied load of 300 μN

Grahic Jump Location
Fig. 5

Indentation and scratch hardness results for: (a) PET, (b) PEEK, (c) PP, and (d) nylon monofilaments. Asterisks signify data are statistically different from the two other environments.

Grahic Jump Location
Fig. 6

Hardness results under dry conditions from indentation of: (a) bulk, (b) monofilament, and (c) multifilament materials, and results of scratch tests of: (d) bulk and (e) monofilament materials. Asterisks signify data are statistically different from all other materials.

Grahic Jump Location
Fig. 7

Wear volumes created during reciprocating line scratch testing

Grahic Jump Location
Fig. 8

Wear coefficients observed during initial stages of line wear

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In