Research Papers: Friction and Wear

Wear Behavior and Mechanical Properties of TiO2 Coating Deposited Electrophoretically on 316 L Stainless Steel

[+] Author and Article Information
Hafedh Dhiflaoui

Ecole Nationale Supérieure d’Ingénieurs de
Université de Tunis,
5 Avenue Taha Hussein,
Montfleury 1008, Tunisia
e-mail: dhafedh@gmail.com

Khlifi Kaouther

Ecole Nationale Supérieure d’Ingénieurs de
Université de Tunis,
5 Avenue Taha Hussein,
Montfleury 1008, Tunisia

Ahmed Ben Cheikh Larbi

Ecole Nationale Supérieure d’Ingénieurs de
Université de Tunis,
5 Avenue Taha Hussein,
Montfleury 1008, Tunisia
e-mail: ahmed.cheikhlaarbi@gmail.com

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received January 16, 2017; final manuscript received September 21, 2017; published online October 23, 2017. Assoc. Editor: Sinan Muftu.

J. Tribol 140(3), 031603 (Oct 23, 2017) (7 pages) Paper No: TRIB-17-1021; doi: 10.1115/1.4038102 History: Received January 16, 2017; Revised September 21, 2017

In this work, the TiO2 coatings were synthesized by electrophoretic deposition (EPD) of nanosized powder in order to improve the tribological properties. Several characterization methods were applied to the coated substrates. The surface topography of the EPD layers, their morphology, composition, and mechanical properties were investigated. The influence of heat treatment, which results in calcination, on the wear performance of coated films was also examined. It was noticed that the effect of the normal force and sliding velocity on the coefficients of instantaneous and stabilized friction was not the same in treated coatings and untreated ones. Moreover, the treated and uncoated films showed a close relation between the dissipated accumulated energy and the worn volume. The energetic wear coefficients of fretting wear were also studied. As expected, the treated coating reduced the energetic wear coefficient, which enhanced the resistance to fretting wear.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Ghosh, D. , Das, S. , Roy, H. , and Mitra, S. K. , 2016, “ Oxidation Behaviour of Nanostructured YSZ Plasma Sprayed Coated Inconel Alloy,” Surf. Eng., 12(32), pp. 1–7. [CrossRef]
Merazga, A. , Al-Subai, F. , Albaradi, A. M. , Badawi, A. , Jaber, A. Y. , Ali, A. , and Alghamdi, B. , 2016, “ Effect of Sol–Gel MgO Spin-Coating on the Performance of TiO2-Based Dye-Sensitized Solar Cells,” Mater. Sci. Semicond. Process., 41, pp. 114–120. [CrossRef]
Das, P. S. , Dey, A. , Mandal, A. K. , Dey, N. , and Mukhopadhyay, A. K. , 2016, “ Growth of Dip Coated Magnesium Oxide Nanoflower Thin Films,” Surf. Eng., 32(1), pp. 15–20. [CrossRef]
Chava, R. K. , Raj, S. , and Yu, Y. T. , 2016, “ Synthesis and Electrophoretic Deposition of Hollow-TiO2 Nanoparticles for Dye Sensitized Solar Cell Applications,” J. Alloys Compd., 672, pp. 212–222. [CrossRef]
Schalk, N. , Weirather, T. , Sabitzer, C. , Hirn, S. , Terziyska, V. L. , Gangopadhyay, S. , Czettl, C. , Polcik, P. , Kathrein, M. , and Mitterer, C. , 2016, “ Combinatorial Synthesis of Cr1−xAlxN and Ta1−xAlxN Coatings Using Industrial Scale Cosputtering,” Surf. Eng., 32(4), pp. 252–257. [CrossRef]
Kreethawate, L. , Larpkiattaworn, S. , Jiemsirilers, S. , Besra, L. , and Uchikoshi, T. , 2010, “ Application of Electrophoretic Deposition for Inner Surface Coating of Porous Ceramic Tubes,” Surf. Coat. Technol., 205(7), pp. 1922–1928. [CrossRef]
Kumara, R. M. , Kuntala, K. K. , Singha, S. , Guptaa, P. , Bharat, P. , Gopinath, P. , and Lahiria, B. , 2016, “ Electrophoretic Deposition of Hydroxyapatite Coating on Mg–3Zn Alloy for Orthopaedic Application,” Surf. Coat. Technol., 287, pp. 82–92. [CrossRef]
Tiana, Q. , Castaneda, L. R. , and Liu, H. , 2017, “ Optimization of Nano-Hydroxyapatite/Poly(Lactic-Co-Glycolic Acid) Coatings on Magnesium Substrates Using One-Step Electrophoretic Deposition,” Mater. Lett., 186, pp. 12–16. [CrossRef]
Besra, L. , and Liu, M. , 2007, “ A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD),” Prog. Mater. Sci., 52(1), pp. 1–61. [CrossRef]
Morks, M. F. , Fahim, N. F. , Muster, T. , and Cole, S. , 2012, “ A Green MnMgZn Phosphate Coating for Steel Pipelines Transporting CO2 Rich Fluids,” Surf. Coat. Technol., 210, pp. 183–189. [CrossRef]
Çomaklı, O. , Yetimb, T. , and Çelik, A. , 2014, “ The Effect of Calcination Temperatures on Wear Properties of TiO2 Coated CP-Ti,” Surf. Coat. Technol., 246, pp. 34–39. [CrossRef]
Antony, C. , Kumar, V. , and Jadurai, J. S. , 2016, “ Influence of Rutile (TiO2) Content on Wear and Microhardness Characteristics of Aluminium-Based Hybrid Composites Synthesized by Powder Metallurgy,” Trans. Nonferrous Met. Soc. China, 26(1), pp. 63–73. [CrossRef]
Fu, T. , Wen, C. S. , Lu, J. , Zhou, Y. M. , Ma, S. G. , Dong, B. H. , and Liu, B. G. , 2012, “ Sol-Gel Derived TiO2 Coating on Plasma Nitrided 316 L Stainless Steel,” Vacuum., 86(9), pp. 1402–1407. [CrossRef]
Wang, Y. , Gao, F. , Yang, J. , Zhu, Y. , Fang, C. , Wang, S. , and Zhao, G. , 2017, “ Comparative Study on Corrosion Characteristics of Al2O3/316 L and TiO2/316 L Stainless Steel in Supercritical Water,” Int. J. Hydrogen Energy, 42(31), pp. 19836–19842. [CrossRef]
Alvarez-Vera, M. , Hdz-García, H. M. , Muñoz-Arroyo, R. , Diaz-Guillen, J. C. , Mtz-Enriquez, A. I. , and Acevedo-Dávil, J. L. , 2017, “ Tribological Study of a Thin TiO2 Nanolayer Coating on 316 L Steel,” Wear, 376–377(Pt. B), pp. 1702–1706. [CrossRef]
Skowronski, L. , Wachowiak, A. A. , Zdunek, K. , Trzcinski, M. , and Naparty, M. K. , 2017, “ TiO2-Based Decorative Coatings Deposited on the AISI 316 L Stainless Steel and Glass Using an Industrial Scale Magnetron,” Thin Solid Films, 627, pp. 1–8. [CrossRef]
Madhan Kumar, A. , and Rajendran, N. , 2013, “ Electrochemical Aspects and In Vitro Biocompatibility of Polypyrrole/TiO2 Ceramic Nanocomposite Coatings on 316 L SS for Orthopedic Implants,” Ceram. Int., 39(5), pp. 5639–5650. [CrossRef]
Dumelie, N. , Benhayoune, H. , and Balossier, G. , 2007, “ TF_Quantif: A Procedure for Quantitative Mapping of Thin Films on Heterogeneous Substrates in Electron Probe Microanalysis (EPMA),” J. Phys. D: Appl. Phys., 40(7), pp. 21–24. [CrossRef]
Oliver, W. C. , and Pharr, G. M. , 1992, “ An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7(6), pp. 1564–1580. [CrossRef]
Burns, G. P. , 1989, “ Titanium Dioxide Dielectric Films Formed by Rapid Thermal Oxidation,” J. Appl. Phys., 65(5), pp. 2095–2097. [CrossRef]
Chang, W. Y. , Fang, T. H. , Chiu, Z. W. , Hsiao, Y. J. , and Ji, L. W. , 2011, “ Nanomechanical Properties of Array TiO2 Nanotubes,” Microporous Mesoporous Mater., 145(1–3), pp. 87–92. [CrossRef]
Leyland, A. , and Matthews, A. , 2000, “ On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour,” Wear, 246(1–2), pp. 1–11. [CrossRef]
Ipaz, L. , Caicedo, J. C. , Esteve, J. , Espinoza-Beltran, F. J. , and Zambrano, G. , 2012, “ Improvement of Mechanical and Tribological Properties in Steel Surfaces by Using Titanium–Aluminum/Titanium–Aluminum Nitride Multilayered System,” Appl. Surf. Sci., 258(8), pp. 3805–3814. [CrossRef]
Lv, F. , Wen, S. P. , Zong, R. L. , Zeng, F. , Gao, Y. , and Pan, F. , 2008, “ Nanoindentation Study of Amorphous-Co79Zr13Nb8/Cr Multilayers,” Surf. Coat. Technol., 202(14), pp. 3239–3245. [CrossRef]
Dejun, K. , Haoyuan, G. , and Wen Chang, W. , 2016, “ Effects of Loadings on Friction and Wear Behaviors of Cathodic Arc Ion Plating AlTiN Coating at High Temperature,” Tribol. Trans., 59(4), pp. 604–612. [CrossRef]
Alsaran, A. , and Albayrak, C. , 2011, “ Effect of Single and Duplex Surface Treatments on Wear Properties of CP-Ti,” Surf. Eng., 27(3), pp. 205–210. [CrossRef]
Ovid’koI, A. , and Sheinerman, A. G. , 2006, “ Nanoparticles as Dislocation Sources in Nanocomposites,” Rev. Adv. Mater. Sci., 18(19), p. L225.
Kim, H. , Kim, D. , Lee, W. , Cho, S. J. , Hahn, J. , and Ahn, H. , 2010, “ Tribological Properties of Nanoporous Anodic Aluminum Oxide Film,” Surf. Coat. Technol., 205(5), pp. 1431–1437. [CrossRef]
Jouanny, I. , Labdi, S. , Aubert, P. , Buscema, C. , Maciejak, O. , Berger, M. H. , Guipont, V. , and Jeandin, M. , 2010, “ Structural and Mechanical Properties of Titanium Oxide Thin Films for Biomedical Application,” Thin Solid Films, 518(12), pp. 3212–3217. [CrossRef]
Kaczmarek, D. , Domaradzki, J. , Wojcieszak, D. , Prociow, E. , Mazur, M. , Placido, F. , and Lapp, S. , 2012, “ Hardness of Nanocrystalline TiO2 Thin Films,” J. Nano Res., 18–19, pp. 195–200. [CrossRef]
Fouvry, S. , and Kapsa, P. , 2001, “ An Energy Description of Hard Coating Wear Mechanisms,” Surf. Coat. Technol., 138(2–3), pp. 141–148. [CrossRef]
Aghdam, A. B. , and Khonsari, M. M. , 2011, “ On the Correlation Between Wear and Entropy in Dry Sliding Contact,” Wear, 270(11–12), pp. 781–790. [CrossRef]
Banjac, M. , Vencl, A. , and Otović, S. , 2014, “ Friction and Wear Processes—Thermodynamic Approach,” Tribol. Ind., 36(4), pp. 341–347.


Grahic Jump Location
Fig. 1

The X-ray diffraction pattern of TiO2 coating

Grahic Jump Location
Fig. 6

Evolution of the friction coefficient for (a) untreated and (b) treated coating (F = 1 N)

Grahic Jump Location
Fig. 2

Scanning electron microscope (SEM) micrographs showing the morphology of the TiO2 coatings: (a) untreated and (b) treated

Grahic Jump Location
Fig. 3

Three-dimensional surface morphology of TiO2 film: (a) before and (b) after thermal treatment at 850 ° C

Grahic Jump Location
Fig. 4

Load–displacement curves carried out on the electrophoretically deposited TiO2 coatings before and after thermal treatment

Grahic Jump Location
Fig. 5

Evolution of the friction coefficient for (a) untreated and (b) treated coating (V = 100 μm/s)

Grahic Jump Location
Fig. 7

Wear volume as a function of normal loads (V = 100 μm/s)

Grahic Jump Location
Fig. 8

Wear volume as a function of sliding velocity (F = 1 N)

Grahic Jump Location
Fig. 10

SEM image of worn surface: (a) untreated and (b)treated coating at applied load of 3 N and sliding velocity of 300 μm/s

Grahic Jump Location
Fig. 9

Variation of the worn volume as a function of dissipated energy

Grahic Jump Location
Fig. 11

Energy-dispersive X-ray spectroscopy patterns of worn surfaces: (a) untreated and (b)treated coating at applied load of 3 N and sliding velocity of 300 μm/s



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In