0
Research Papers: Hydrodynamic Lubrication

Effects of Compound Groove Texture on Noise of Journal Bearing

[+] Author and Article Information
F. M. Meng

The State Key Laboratory of
Mechanical Transmission,
Chongqing University,
Chongqing 400044, China
e-mail: fmmeng@cqu.edu.cn

W. Zhang

The State Key Laboratory of
Mechanical Transmission,
Chongqing University,
Chongqing 400044, China
e-mail: 20140702115@cqu.edu.cn

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received March 13, 2017; final manuscript received September 30, 2017; published online December 6, 2017. Assoc. Editor: Joichi Sugimura.

J. Tribol 140(3), 031703 (Dec 06, 2017) (12 pages) Paper No: TRIB-17-1086; doi: 10.1115/1.4038353 History: Received March 13, 2017; Revised September 30, 2017

The noise of a journal bearing with the compound groove textures is studied based on computation fluid dynamic (CFD) theory and broadband noise source theory. In doing so, the acoustic power levels of the noise for the journal bearing with the compound groove textures and simple ones are separately solved at different geometry sizes and positions of the groove texture, and varied lubricant parameters using CFD method. Numerical results show that the compound groove texture can more effectively lower the acoustic power level of the journal bearing, compared with the simple groove texture. This reduction depends on the groove size and its position, and density and viscosity of the lubricant.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Etsion, I. , 2005, “ State of the Art in Laser Surface Texturing,” ASME. J. Tribol., 127(1), pp. 248–253.
Gropper, D. , Wang, L. , and Harvey, T. J. , 2016, “ Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings,” Tribol. Lett., 94, pp. 509–529. [CrossRef]
Ryk, G. , and Etsion, I. , 2006, “ Testing Piston Rings With Partial Laser Surface Texturing for Friction Reduction,” Wear, 261(7–8), pp. 792–796. [CrossRef]
Podgornik, B. , Vilhena, L. M. , Sedlacek, M. , Rek, Z. , and Zun, I. , 2012, “ Effectiveness and Design of Surface Texturing for Different Lubrication Regimes,” Meccanica, 47(7), pp. 1613–1622. [CrossRef]
Ren, N. , Nanbu, T. , Yasuda, Y. , Zhu, D. , and Wang, Q. , 2007, “ Micro Textures in Concentrated-Conformal-Contact Lubrication: Effect of Distribution Patterns,” Tribol. Lett., 28(3), pp. 275–285. [CrossRef]
Shen, C. , and Khonsari, M. M. , 2015, “ Numerical Optimization of Texture Shape for Parallel Surfaces Under Unidirectional and Bidirectional Sliding,” Tribol. Int., 82(Pt. A), pp. 1–11. [CrossRef]
Shen, C. , and Khonsari, M. M. , 2016, “ Texture Shape Optimization for Seal-Like Parallel Surfaces: Theory and Experiment,” Tribol. Trans., 59(4), pp. 698–706. [CrossRef]
Etsion, I. , Halperin, G. , Brizmer, V. , and Kligerman, Y. , 2004, “ Experimental Investigation of Laser Surface Textured Parallel Thrust Bearings,” Tribol. Lett., 17(2), pp. 295–300. [CrossRef]
Murthy, A. N. , Etsion, I. , and Talke, F. E. , 2007, “ Analysis of Surface Textured Air Bearing Sliders With Rarefaction Effects,” Tribol. Lett., 28(3), pp. 251–261. [CrossRef]
Cupillard, S. , Glavatskih, S. , and Cervantes, M. J. , 2008, “ Computational Fluid Dynamics Analysis of a Journal Bearing With Surface Texturing,” Proc. Inst. Mech. Eng. J., 222(2), pp. 97–107. [CrossRef]
Adatepe, H. , Biyiklioglu, A. , and Sofuoglu, H. , 2013, “ An Investigation of Tribological Behaviors of Dynamically Loaded Non-Grooved and Micro-Grooved Journal Bearings,” Tribol. Int., 58, pp. 12–19. [CrossRef]
Arab Solghar, A. , Brito, F. P. , Abdolzadeh, M. , and Farajpour, A. , 2015, “ Numerical Study of Twin Groove Journal Bearings Performance Under Steady-State Condition,” Lubr. Sci., 27(2), pp. 83–102. [CrossRef]
Meng, F. M. , and Li, T. T. , 2015, “ Study of Tribological Performances of Compound Dimples Based on Diatom Shell Structures,” Int. J. Surf. Sci. Eng., 9(6), pp. 538–560. [CrossRef]
Meng, F. M. , Gao, G. X. , and Jia, Z. H. , 2015, “ Study on Tribological Mechanism for Multi-Layer Porous Structure of Diatom Frustule,” Microbial Ecol., 69(1), pp. 45–58. [CrossRef]
Meng, F. M. , Zhang, L. , Liu, Y. , and Li, T. T. , 2015, “ Effect of Compound Dimple on Tribological Performances of Journal Bearing,” Tribol. Int., 91, pp. 99–110. [CrossRef]
Othman, M. O. , Elkholy, A. H. , and Seireg, A. A. , 1990, “ Experimental Investigation of Frictional Noise and Surface-Roughness Characteristics,” Exp. Mech., 30(4), pp. 328–331. [CrossRef]
Jibiki, T. , Shima, M. , Akita, H. , and Tamura, M. , 2001, “ A Basic Study of Friction Noise Caused by Fretting,” Wear, 251(1), pp. 1492–1503. [CrossRef]
Wang, D. W. , Mo, J. L. , Ouyang, H. , Chen, G. X. , Zhu, M. H. , and Zhou, Z. R. , 2014, “ Experimental and Numerical Studies of Friction-Induced Vibration and Noise and the Effects of Groove-Textured Surfaces,” Mech. Syst. Signal. Process., 46(2), pp. 191–208. [CrossRef]
Mo, J. L. , Wang, Z. G. , Chen, G. X. , Shao, T. M. , Zhu, M. H. , and Zhou, Z. R. , 2013, “ The Effect of Groove-Textured Surface on Friction and Wear and Friction-Induced Vibration and Noise,” Wear, 301(1–2), pp. 671–681. [CrossRef]
Rho, B. H. , and Kim, K. W. , 2003, “ Acoustical Properties of Hydrodynamic Journal Bearings,” Tribol. Int., 36(1), pp. 61–66. [CrossRef]
Peng, E. P. , Liu, Z. L. , Lan, F. , Zhang, S. D. , and Dai, M. C. , 2011, “ Research on Noise Generation Mechanism of Rubber Material for Water-Lubricated Bearings,” Appl. Mech. Mat., 84–85, pp. 539–543. [CrossRef]
Meng, F. M. , Zhang, W. , Du, M. G. , and Gao, G. X. , 2016, “ Study of Acoustic Performance of Textured Journal Bearing,” Proc. Inst. Mech. Eng. J, 230(2), pp. 156–169. [CrossRef]
Bhushan, B. , 1980, “ Stick-Slip Induced Noise Generation in Water-Lubricated Compliant Rubber Bearings,” ASME J. Lubr. Technol., 102(2), pp. 201–212. [CrossRef]
Rho, B. H. , Kim, D. G. , and Kim, K. W. , 2003, “ Noise Analysis of Oil Lubricated Journal Bearings,” Proc. Inst. Mech. Eng. C, 217(3), pp. 365–371. [CrossRef]
Bouaziz, S. , Fakhfakh, T. , and Haddar, M. , 2012, “ Acoustic Analysis of Hydrodynamic and Elasto-Hydrodynamic Oil Lubricated Journal Bearings,” J. Hydrodyn., 24(2), pp. 250–256. [CrossRef]
Arghir, M. , Roucou, N. , Helene, M. , and Frene, J. , 2003, “ Theoretical Analysis of the Incompressible Laminar Flow in a Macro-Roughness Cell,” ASME J. Tribol., 125(2), pp. 309–318. [CrossRef]
Sahlin, F. , Glavatskih, S. B. , Almqvist, T. , and Larsson, R. , 2005, “ Two-Dimensional CFD-Analysis of Micro-Patterned Surfaces in Hydrodynamic Lubrication,” ASME J. Tribol., 127(1), pp. 96–102. [CrossRef]
Plesset, M. S. , and Prosperetti, A. , 1977, “ Bubble Dynamics and Cavitation,” J. Fluid Mech., 9, pp. 145–185. [CrossRef]
Markatos, N. C. , 1986, “ The Mathematical Modelling of Turbulent Flows,” Appl. Math. Model., 10(3), pp. 190–220. [CrossRef]
Launder, B. E. , and Spalding, D. B. , 1972, Lectures in Mathematical Models of Turbulence, Academic Press, London.
Stavrakakis, G. M. , Tomazinakis, N. M. , and Markatos, N. C. , 2012, “ Modified ‘Closure’ Constants of the Standard k–ε Turbulence Model for the Prediction of Wind-Induced Natural Ventilation,” Build. Serv. Eng. Res. Technol., 33(3), pp. 241–261. [CrossRef]
Proudman, I. , 1952, “ The Generation of Noise by Isotropic Turbulence,” Proc. R. Soc. A., 214(214), pp. 119–132. [CrossRef]
ANSYS, 2009, ANSYS FLUENT 14.5 Theory Guide, ANSYS Inc., Pittsburgh, PA.
Gu, C. X. , Meng, X. H. , Xie, Y. B. , and Yang, Y. M. , 2016, “ Effects of Surface Texturing on Ring/Liner Friction Under Starved Lubrication,” Tribol. Int., 94, pp. 591–605. [CrossRef]
Meng, F. M. , Zhou, R. , Davis, T. , Cao, J. , Wang, Q. J. , Hua, D. , and Liu, J. , 2010, “ Study on Effect of Dimples on Friction of Parallel Surfaces Under Different Sliding Conditions,” Appl. Surf. Sci., 256(9), pp. 2863–2875. [CrossRef]
Harp, S. R. , and Salant, R. F. , 2001, “ An Average Flow Model of Rough Surface Lubrication With Inter-Asperity Cavitation,” ASME J. Tribol., 123(1), pp. 134–143. [CrossRef]
Zhang, J. Y. , and Meng, Y. G. , 2012, “ Direct Observation of Cavitation Phenomenon and Hydrodynamic Lubrication Analysis of Textured Surfaces,” Tribol. Lett., 46(2), pp. 147–158. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic of a textured journal bearing and groove texture with geometry sizes: (a) schematic of journal bearing with compound groove textures, (b) three-dimensional compound groove texture, (c) geometry sizes of compound groove texture, (d) three-dimensional simple groove texture, and (e) geometry sizes of simple groove texture

Grahic Jump Location
Fig. 2

Schematic of meshed lubricant film: (1) film outer surface, (2) film inner surface, (3) pressure outlet, and (4) plane of symmetry: (a) the whole meshed lubricant film and (b) meshed lubricant film in the groove

Grahic Jump Location
Fig. 3

Comparison between experimental and numerical film pressure (z/LB = 0.1)

Grahic Jump Location
Fig. 15

Average acoustic power levels at different lubricant initial viscosities (D = 0.6 mm, R = 0.4 mm): (a) W = 3.0 mm, (b) W = 3.5 mm, (c) W = 4.0 mm, and (d) W = 4.5 mm

Grahic Jump Location
Fig. 16

Film pressure comparison at different initial lubricant viscosities

Grahic Jump Location
Fig. 17

Cavitation volume fraction at different initial lubricant viscosities (W = 3.0 mm, D = 0.6 mm, R = 0.4 mm): (a) μ0 =0.0010 Pa·s, (b) μ0 = 0.0015 Pa·s, (c) μ0 = 0.0025 Pa·s, and (d) μ0 = 0.0030 Pa·s

Grahic Jump Location
Fig. 18

Average cavitation volume fraction at different initial lubricant viscosities

Grahic Jump Location
Fig. 19

Velocity gradient at the half film thickness for the fifth groove

Grahic Jump Location
Fig. 9

Average acoustic power levels at different groove radii at the second layer (D = 0.6 mm): (a) W = 3.0 mm, (b) W = 3.5 mm, (c) W = 4.0 mm, and (d) W = 4.5 mm

Grahic Jump Location
Fig. 10

Average velocity of lubricant at different groove radii at the second layer

Grahic Jump Location
Fig. 4

Average acoustic power levels at different groove depths (R = 0.2 mm): (a) W = 3.0 mm, (b) W = 3.5 mm, (c) W = 4.0 mm, and (d) W = 4.5 mm

Grahic Jump Location
Fig. 5

Acoustic power levels at the fifth groove position

Grahic Jump Location
Fig. 6

Load-carrying capacities and friction coefficients at different groove depths: (a) load-carrying capacities at different groove depths and (b) friction coefficients at different groove depths

Grahic Jump Location
Fig. 7

Average acoustic power levels at different groove widths (R = 0.2 mm): (a) D = 0.2 mm, (b) D = 0.4 mm, (c) D = 0.6 mm, and (d) D = 0.8 mm

Grahic Jump Location
Fig. 8

Average turbulent kinetic energy and dissipation rate at different groove widths: (a) average turbulent kinetic energy at different groove widths and (b) average turbulent dissipation rate at different groove widths

Grahic Jump Location
Fig. 13

Average acoustic power levels at different initial lubricant densities (D = 0.6 mm, R = 0.4 mm): (a) W = 3.0 mm, (b) W = 3.5 mm, (c) W = 4.0 mm, and (d) W = 4.5 mm

Grahic Jump Location
Fig. 14

Turbulence terms at different initial lubricant densities (W = 3.0 mm, D = 0.6 mm, R = 0.4 mm): (a) turbulent kinetic energy at different initial lubricant densities and (b) turbulent dissipation rate at different initial lubricant densities

Grahic Jump Location
Fig. 11

Average acoustic power levels at different groove positions: (a) W = 3.5 mm, R = 0.2 mm, (b) D = 0.6 mm, R = 0.2 mm, and (c) D = 0.6 mm, W = 3.5 mm

Grahic Jump Location
Fig. 12

Average shear stress at different groove positions: (a) W = 3.5 mm, R = 0.2 mm, (b) D = 0.6 mm, R = 0.2 mm, and (c) D = 0.6 mm, W = 3.5 mm

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In