0
Review Article: Review Articles

Partial Slip Texture Slider and Journal Bearing Lubricated With Newtonian Fluids: A Review

[+] Author and Article Information
A. Senatore

Department of Industrial Engineering,
University of Salerno,
via Giovanni Paolo II, 132,
Fisciano, SA 84084, Italy

T. V. V. L. N. Rao

School of Mechanical Engineering,
SRM Institute of Science and Technology,
Kattankulathur 603203, India
e-mail: tvvlnrao@gmail.com

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received April 3, 2017; final manuscript received December 24, 2017; published online March 2, 2018. Assoc. Editor: Joichi Sugimura.

J. Tribol 140(4), 040801 (Mar 02, 2018) (20 pages) Paper No: TRIB-17-1122; doi: 10.1115/1.4039226 History: Received April 03, 2017; Revised December 24, 2017

Partial slip texture surfaces have proven to be effective to improve load capacity and reduce coefficient of friction in slider and journal bearings. By controlling the partial slip surface texture properties, bearing with desired performance can be designed. It is of consequent interest to study the lubrication of slider and journal bearing systems taking into consideration design of partial slip texture surfaces. This paper aims at covering several investigation works related to slider and journal bearing lubricated with Newtonian fluids focusing on partial slip texture influence on bearing performance characteristics.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Rao, T. V. V. L. N. , 2010, “ Analysis of Single-Grooved Slider and Journal Bearing With Partial Slip Surface,” ASME J. Tribol., 132(1), p. 014501. [CrossRef]
Craig, V. S. J. , Neto, C. , and Williams, D. R. M. , 2001, “ Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid,” Phys. Rev. Lett., 87(5), p. 054504. [CrossRef] [PubMed]
Zhu, Y. , and Granick, S. , 2001, “ Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces,” Phys. Rev. Lett., 87(9), p. 096105. [CrossRef] [PubMed]
Zhu, Y. , and Granick, S. , 2002, “ Limits of Hydrodynamic No-Slip Boundary Condition,” Phys. Rev. Lett., 88(10), p. 106102. [CrossRef] [PubMed]
Kaneta, M. , Nishikawa, H. , and Kameishi, K. , 1990, “ Observation of Wall Slip in Elastohydrodynamic Lubrication,” ASME J. Tribol., 112(3), pp. 447–452. [CrossRef]
Strozzi, A. , 1985, “ Formulation of Three Lubrication Problems in Terms of Complementarity,” Wear, 104(2), pp. 103–119. [CrossRef]
Jacobson, B. O. , and Hamrock, B. J. , 1984, “ Non-Newtonian Fluid Model Incorporated Into Elastohydrodynamic Lubrication of Rectangular Contacts,” ASME J. Tribol., 106(2), pp. 275–282. [CrossRef]
Spikes, H. A. , 2003, “ The Half-Wetted Bearing—Part 2: Potential Applications in Low Load Contacts,” Proc. Inst. Mech. Eng. Part J, 217(1), pp. 15–26. [CrossRef]
Spikes, H. A. , 2003, “ The Half-Wetted Bearing—Part 1: Extended Reynolds Equation,” Proc. Inst. Mech. Eng. Part J, 217(1), pp. 1–14. [CrossRef]
Salant, R. F. , and Fortier, A. E. , 2004, “ Numerical Analysis of a Slider Bearing With a Heterogeneous Slip/No-Slip Surface,” Tribol. Trans., 47(3), pp. 328–334. [CrossRef]
Wu, C. W. , Ma, G. J. , Zhou, P. , and Wu, C. D. , 2006, “ Low Friction and High Load Support Capacity of Slider Bearing With a Mixed Slip Surface,” ASME J. Tribol., 128(4), pp. 904–907. [CrossRef]
Guo, F. , and Wong, P. L. , 2006, “ Theoretical Prediction of Hydrodynamic Effect by Tailored Boundary Slippage,” Proc. Inst. Mech. Eng. Part J, 220(1), pp. 43–48. [CrossRef]
Bayada, G. , and Meurisse, M.-H. , 2009, “ Impact of the Cavitation Model on the Theoretical Performance of Heterogeneous Slip/No-Slip Engineered Contacts in Hydrodynamic Conditions,” Proc. Inst. Mech. Eng. Part J, 223(3), pp. 371–381. [CrossRef]
Jao, H.-C. , Chang, K.-M. , Chu, L.-M. , and Li, W.-L. , 2015, “ A Modified Average Reynolds Equation for Rough Bearings With Anisotropic Slip,” ASME J. Tribol., 138(1), p. 011702. [CrossRef]
Guo, F. , Wong, P. L. , Fu, Z. , and Ma, C. , 2010, “ Interferometry Measurement of Lubricating Films in Slider-on-Disc Contacts,” Tribol. Lett., 39(1), pp. 71–79. [CrossRef]
Guo, F. , Yang, S. Y. , Ma, C. , and Wong, P. L. , 2014, “ Experimental Study on Lubrication Film Thickness Under Different Interface Wettabilities,” Tribol. Lett., 54(1), pp. 81–88. [CrossRef]
Guo, L. , Wong, P. L. , and Guo, F. , 2016, “ Boundary Yield Stress and Interfacial Potential Energy Barrier in Thin Film Hydrodynamic Lubrication,” Tribol. Lett., 62(1), p. 7. [CrossRef]
Tønder, K. , 2001, “ Inlet Roughness Tribodevices: Dynamic Coefficients and Leakage,” Tribol. Int., 34(12), pp. 847–852. [CrossRef]
Tønder, K. , 2004, “ Hydrodynamic Effects of Tailored Inlet Roughness: Extended Theory,” Tribol. Int., 37(2), pp. 137–142. [CrossRef]
Tønder, K. , 2011, “ Micro- and Macro-Modifications of Pivoted Slider Bearings: Performance Comparison and Texturing Versus Width Reduction,” Tribol. Int., 44(4), pp. 463–467. [CrossRef]
Yagi, K. , and Sugimura, J. , 2016, “ Performance of Balancing Wedge Action in Textured Hydrodynamic Pad Bearings,” ASME J. Tribol., 139(1), p. 011704. [CrossRef]
Yagi, K. , and Sugimura, J. , 2016, “ Balancing Wedge Action in Textured Converging Bearings,” Proc. Inst. Mech. Eng. Part J, 230(3), pp. 241–256. [CrossRef]
Yagi, K. , and Sugimura, J. , 2013, “ Balancing Wedge Action: A Contribution of Textured Surface to Hydrodynamic Pressure Generation,” Tribol. Lett., 50(3), pp. 349–364. [CrossRef]
Etsion, I. , 2004, “ Improving Tribological Performance of Mechanical Components by Laser Surface Texturing,” Tribol. Lett., 17(4), pp. 733–737. [CrossRef]
Etsion, I. , Halperin, G. , Brizmer, V. , and Kligerman, Y. , 2004, “ Experimental Investigation of Laser Surface Textured Parallel Thrust Bearings,” Tribol. Lett., 17(2), pp. 295–300. [CrossRef]
Coblas, D. G. , Fatu, A. , Maoui, A. , and Hajjam, M. , 2015, “ Manufacturing Textured Surfaces: State of Art and Recent Developments,” Proc. Inst. Mech. Eng. Part J, 229(1), pp. 3–29. [CrossRef]
Ibatan, T. , Uddin, M. S. , and Chowdhury, M. A. K. , 2015, “ Recent Development on Surface Texturing in Enhancing Tribological Performance of Bearing Sliders,” Surf. Coat. Technol., 272, pp. 102–120. [CrossRef]
Gropper, D. , Wang, L. , and Harvey, T. J. , 2016, “ Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings,” Tribol. Int., 94, pp. 509–529. [CrossRef]
Baharin, A. F. S. , Ghazali, M. J. , and Wahab, J. A. , 2016, “ Laser Surface Texturing and Its Contribution to Friction and Wear Reduction: A Brief Review,” Ind. Lubr. Tribol., 68(1), pp. 57–66. [CrossRef]
Brizmer, V. , Kligerman, Y. , and Etsion, I. , 2003, “ A Laser Surface Textured Parallel Thrust Bearing,” Tribol. Trans., 46(3), pp. 397–403. [CrossRef]
Pascovici, M. D. , Cicone, T. , Fillon, M. , and Dobrica, M. B. , 2009, “ Analytical Investigation of a Partially Textured Parallel Slider,” Proc. Inst. Mech. Eng. Part J, 223(2), pp. 151–158. [CrossRef]
Rahmani, R. , Shirvani, A. , and Shirvani, H. , 2007, “ Optimization of Partially Textured Parallel Thrust Bearings With Square-Shaped Micro-Dimples,” Tribol. Trans., 50(3), pp. 401–406. [CrossRef]
Rahmani, R. , Mirzaee, I. , Shirvani, A. , and Shirvani, H. , 2010, “ An Analytical Approach for Analysis and Optimization of Slider Bearings With Infinite Width Parallel Textures,” Tribol. Int., 43(8), pp. 1551–1565. [CrossRef]
Ji, J. , Fu, Y. , and Bi, Q. , 2014, “ The Influence of Partially Textured Slider With Orientation Ellipse Dimples on the Behavior of Hydrodynamic Lubrication,” Ind. Lubr. Tribol., 66(2), pp. 161–167. [CrossRef]
Uddin, M. S. , Ibatan, T. , and Shankar, S. , 2017, “ Influence of Surface Texture Shape, Geometry and Orientation on Hydrodynamic Lubrication Performance of Plane-to-Plane Slider Surfaces,” Lubr. Sci., 29(3), pp. 153–181. [CrossRef]
Ogata, H. , and Sugimura, J. , 2016, “ Equivalent Clearance Model for Solving Thermohydrodynamic Lubrication of Slider Bearings With Steps,” ASME J. Tribol., 139(3), p. 034503. [CrossRef]
Fowell, M. , Olver, A. V. , Gosman, A. D. , Spikes, H. A. , and Pegg, I. , 2007, “ Entrainment and Inlet Suction: Two Mechanisms of Hydrodynamic Lubrication in Textured Bearings,” ASME J. Tribol., 129(2), pp. 336–347. [CrossRef]
Olver, A. V. , Fowell, M. T. , Spikes, H. A. , and Pegg, I. G. , 2006, “ Inlet Suction: A Load Support Mechanism in Non-Convergent, Pocketed, Hydrodynamic Bearings,” Proc. Inst. Mech. Eng. Part J, 220(2), pp. 105–108. [CrossRef]
Dobrica, M. B. , Fillon, M. , Pascovici, M. D. , and Cicone, T. , 2010, “ Optimizing Surface Texture for Hydrodynamic Lubricated Contacts Using a Mass-Conserving Numerical Approach,” Proc. Inst. Mech. Eng. Part J, 224(8), pp. 737–750. [CrossRef]
Fowell, M. T. , Medina, S. , Olver, A. V. , Spikes, H. A. , and Pegg, I. G. , 2012, “ Parametric Study of Texturing in Convergent Bearings,” Tribol. Int., 52, pp. 7–16. [CrossRef]
Wang, H. , Yang, S. , and Guo, F. , 2011, “ Modeling of a Grooved Parallel Bearing With a Mass-Conserving Cavitation Algorithm,” Tribol. Trans., 54(2), pp. 227–236. [CrossRef]
Hamilton, D. B. , Halowit, J. A. , and Allen, C. M. , 1966, “ A Theory of Lubrication by Microirregularities,” ASME J. Basic Eng., 88(1), pp. 177–185. [CrossRef]
Gherca, A. R. , Maspeyrot, P. , Hajjam, M. , and Fatu, A. , 2013, “ Influence of Texture Geometry on the Hydrodynamic Performances of Parallel Bearings,” Tribol. Trans., 56(3), pp. 321–332. [CrossRef]
Wang, L. , Wang, W. , Wang, H. , Ma, T. , and Hu, Y. , 2014, “ Numerical Analysis on the Factors Affecting the Hydrodynamic Performance for the Parallel Surfaces With Microtextures,” ASME J. Tribol., 136(2), p. 021702. [CrossRef]
Zhang, J. , and Meng, Y. , 2012, “ Direct Observation of Cavitation Phenomenon and Hydrodynamic Lubrication Analysis of Textured Surfaces,” Tribol. Lett., 46(2), pp. 147–158. [CrossRef]
Dobrica, M. B. , and Fillon, M. , 2009, “ About the Validity of Reynolds Equation and Inertia Effects in Textured Sliders of Infinite Width,” Proc. Inst. Mech. Eng. Part J, 223(1), pp. 69–78. [CrossRef]
Cupillard, S. , Glavatskih, S. , and Cervantes, M. J. , 2010, “ Inertia Effects in Textured Hydrodynamic Contacts,” Proc. Inst. Mech. Eng. Part J, 224(8), pp. 751–756. [CrossRef]
Papadopoulos, C. I. , Kaiktsis, L. , and Fillon, M. , 2013, “ Computational Fluid Dynamics Thermohydrodynamic Analysis of Three-Dimensional Sector-Pad Thrust Bearings With Rectangular Dimples,” ASME J. Tribol., 136(1), p. 011702. [CrossRef]
Papadopoulos, C. I. , Nikolakopoulos, P. G. , and Kaiktsis, L. , 2011, “ Evolutionary Optimization of Micro-Thrust Bearings With Periodic Partial Trapezoidal Surface Texturing,” ASME J. Eng. Gas Turbines Power, 133(1), p. 012301. [CrossRef]
Syed, I. , and Sarangi, M. , 2014, “ Hydrodynamic Lubrication With Deterministic Micro Textures Considering Fluid Inertia Effect,” Tribol. Int., 69, pp. 30–38. [CrossRef]
Gherca, A. , Fatu, A. , Hajjam, M. , and Maspeyrot, P. , 2015, “ Effects of Surface Texturing in Steady-State and Transient Flow Conditions: Two-Dimensional Numerical Simulation Using a Mass-Conserving Cavitation Model,” Proc. Inst. Mech. Eng. Part J, 229(4), pp. 505–522. [CrossRef]
Gherca, A. , Fatu, A. , Hajjam, M. , and Maspeyrot, P. , 2016, “ Influence of Surface Texturing on the Hydrodynamic Performance of a Thrust Bearing Operating in Steady-State and Transient Lubrication Regime,” Tribol. Int., 102, pp. 305–318. [CrossRef]
Qiu, M. , and Raeymaekers, B. , 2015, “ The Load-Carrying Capacity and Friction Coefficient of Incompressible Textured Parallel Slider Bearings With Surface Roughness Inside the Texture Features,” Proc. Inst. Mech. Eng. Part J, 229(4), pp. 547–556. [CrossRef]
Caramia, G. , Carbone, G. , and Palma, P. D. , 2015, “ Hydrodynamic Lubrication of Micro-Textured Surfaces: Two Dimensional CFD-Analysis,” Tribol. Int., 88, pp. 162–169. [CrossRef]
Imai, N. , and Kato, T. , 2013, “ Effects of Texture Patterns on Hydrodynamic and Mixed Lubrication Characteristics,” Proc. Inst. Mech. Eng. Part J, 227(8), pp. 898–904. [CrossRef]
Yang, S. , Wang, H. , and Guo, F. , 2014, “ Study on the Load-Carrying Mechanism of a Parallel Step Bearing,” Proc. Inst. Mech. Eng. Part J, 228(4), pp. 407–414. [CrossRef]
Johnston, M. T. , King, W. P. , and Ewoldt, R. H. , 2015, “ Shear Stress Characteristics of Microtextured Surfaces in Gap-Controlled Hydrodynamic Lubrication,” Tribol. Int., 82, pp. 123–132. [CrossRef]
Schuh, J. K. , and Ewoldt, R. H. , 2016, “ Asymmetric Surface Textures Decrease Friction With Newtonian Fluids in Full Film Lubricated Sliding Contact,” Tribol. Int., 97, pp. 490–498. [CrossRef]
Yu, H. , Deng, H. , Huang, W. , and Wang, X. , 2011, “ The Effect of Dimple Shapes on Friction of Parallel Surfaces,” Proc. Inst. Mech. Eng. Part J, 225(8), pp. 693–703. [CrossRef]
Yu, H. , Wang, X. , and Zhou, F. , 2010, “ Geometric Shape Effects of Surface Texture on the Generation of Hydrodynamic Pressure Between Conformal Contacting Surfaces,” Tribol. Lett., 37(2), pp. 123–130. [CrossRef]
Malik, S. , and Kakoty, S. K. , 2014, “ Analysis of Dimple Textured Parallel and Inclined Slider Bearing,” Proc. Inst. Mech. Eng. Part J, 228(12), pp. 1343–1357. [CrossRef]
Fouflias, D. G. , Charitopoulos, A. G. , Papadopoulos, C. I. , Kaiktsis, L. , and Fillon, M. , 2015, “ Performance Comparison Between Textured, Pocket, and Tapered-Land Sector-Pad Thrust Bearings Using Computational Fluid Dynamics Thermohydrodynamic Analysis,” Proc. Inst. Mech. Eng. Part J, 229(4), pp. 376–397. [CrossRef]
Cupillard, S. , Cervantes, M. J. , and Glavatskih, S. , 2008, “ Pressure Buildup Mechanism in a Textured Inlet of a Hydrodynamic Contact,” ASME J. Tribol., 130(2), p. 021701. [CrossRef]
Cupillard, S. , Glavatskih, S. , and Cervantes, M. J. , 2009, “ 3D Thermohydrodynamic Analysis of a Textured Slider,” Tribol. Int., 42(10), pp. 1487–1495. [CrossRef]
Han, J. , Fang, L. , Sun, J. , and Ge, S. , 2010, “ Hydrodynamic Lubrication of Microdimple Textured Surface Using Three-Dimensional CFD,” Tribol. Trans., 53(6), pp. 860–870. [CrossRef]
Papadopoulos, C. I. , Efstathiou, E. E. , Nikolakopoulos, P. G. , and Kaiktsis, L. , 2011, “ Geometry Optimization of Textured Three-Dimensional Micro-Thrust Bearings,” ASME J. Tribol., 133(4), p. 041702. [CrossRef]
Podsiadlo, P. , and Stachowiak, G. W. , 2013, “ Directional Multiscale Analysis and Optimization for Surface Textures,” Tribol. Lett., 49(1), pp. 179–191. [CrossRef]
Han, J. , Fang, L. , Sun, J. , Wang, Y. , Ge, S. , and Zhu, H. , 2011, “ Hydrodynamic Lubrication of Surfaces With Asymmetric Microdimple,” Tribol. Trans., 54(4), pp. 607–615. [CrossRef]
Woloszynski, T. , Podsiadlo, P. , and Stachowiak, G. W. , 2015, “ Evaluation of Discretization and Integration Methods for the Analysis of Finite Hydrodynamic Bearings With Surface Texturing,” Proc. Inst. Mech. Eng. Part J, 229(4), pp. 465–477. [CrossRef]
Woloszynski, T. , Podsiadlo, P. , and Stachowiak, G. W. , 2013, “ Evaluation of Discretisation and Integration Methods for the Analysis of Hydrodynamic Bearings With and Without Surface Texturing,” Tribol. Lett., 51(1), pp. 25–47. [CrossRef]
Ji, J. , Fu, Y. , and Bi, Q. , 2014, “ Influence of Geometric Shapes on the Hydrodynamic Lubrication of a Partially Textured Slider With Micro-Grooves,” ASME J. Tribol., 136(4), p. 041702. [CrossRef]
Fu, Y. , Ji, J. , and Bi, Q. , 2012, “ The Influence of Partially Textured Slider With Oriented Parabolic Grooves on the Behavior of Hydrodynamic Lubrication,” Tribol. Trans., 55(2), pp. 210–217. [CrossRef]
Qiu, Y. , and Khonsari, M. M. , 2011, “ Performance Analysis of Full-Film Textured Surfaces With Consideration of Roughness Effects,” ASME J. Tribol., 133(2), p. 021704. [CrossRef]
Shi, X. , and Ni, T. , 2011, “ Effects of Groove Textures on Fully Lubricated Sliding With Cavitation,” Tribol. Int., 44(12), pp. 2022–2028. [CrossRef]
Checo, H. M. , Jaramillo, A. , Jai, M. , and Buscaglia, G. C. , 2015, “ Texture-Induced Cavitation Bubbles and Friction Reduction in the Elrod–Adams Model,” Proc. Inst. Mech. Eng. Part J, 229(4), pp. 478–492. [CrossRef]
de Kraker, A. , van Ostayen, R. A. J. , and Rixen, D. J. , 2010, “ Development of a Texture Averaged Reynolds Equation,” Tribol. Int., 43(11), pp. 2100–2109. [CrossRef]
Pei, S. , Ma, S. , Xu, H. , Wang, F. , and Zhang, Y. , 2011, “ A Multiscale Method of Modeling Surface Texture in Hydrodynamic Regime,” Tribol. Int., 44(12), pp. 1810–1818. [CrossRef]
Medina, S. , Fowell, M. T. , Vladescu, S.-C. , Reddyhoff, T. , Pegg, I. , Olver, A. V. , and Dini, D. , 2015, “ Transient Effects in Lubricated Textured Bearings,” Proc. Inst. Mech. Eng. Part J, 229(4), pp. 523–537. [CrossRef]
Marian, V. G. , Kilian, M. , and Scholz, W. , 2007, “ Theoretical and Experimental Analysis of a Partially Textured Thrust Bearing With Square Dimples,” Proc. Inst. Mech. Eng. Part J, 221(7), pp. 771–778. [CrossRef]
Marian, V. G. , Gabriel, D. , Knoll, G. , and Filippone, S. , 2011, “ Theoretical and Experimental Analysis of a Laser Textured Thrust Bearing,” Tribol. Lett., 44, pp. 335–343.
Henry, Y. , Bouyer, J. , and Fillon, M. , 2015, “ An Experimental Analysis of the Hydrodynamic Contribution of Textured Thrust Bearings During Steady-State Operation: A Comparison With the Untextured Parallel Surface Configuration,” Proc. Inst. Mech. Eng. Part J, 229(4), pp. 362–375. [CrossRef]
Bai, L. , Meng, Y. , and Zhang, V. , 2016, “ Experimental Study on Transient Behavior of Cavitation Phenomenon in Textured Thrust Bearings,” Tribol. Lett., 63(2), p. 27. [CrossRef]
Liao, S. , Huang, W. , and Wang, X. , 2012, “ Micro-Magnetic Field Arrayed Surface for Ferrofluids Lubrication,” ASME J. Tribol., 134(2), p. 021701. [CrossRef]
Huang, W. , Wang, J. , and Wang, X. , 2013, “ Study on the Frictional Properties of Micro-Magnet Arrayed Surface Lubricated With Ferrofluids,” Proc. Inst. Mech. Eng. Part J, 227(5), pp. 406–412. [CrossRef]
Rao, T. V. V. L. N. , Rani, A. M. A. , Nagarajan, T. , and Hashim, F. M. , 2012, “ Analysis of Slider and Journal Bearing Using Partially Textured Slip Surface,” Tribol. Int., 56, pp. 121–128. [CrossRef]
Scaraggi, M. , 2014, “ Partial Surface Texturing: Optimal Textures for Increasing the Load Support in a Thrust Bearing Pad Geometry,” Tribol. Lett., 53(1), pp. 127–143. [CrossRef]
Scaraggi, M. , 2015, “ Partial Surface Texturing: A Mechanism for Local Flow Reconditioning in Lubricated Contacts,” Proc. Inst. Mech. Eng. Part J, 229(4), pp. 493–504. [CrossRef]
Tauviqirrahman, M. , Ismail, R. , Jamari, J. , and Schipper, D. J. , 2013, “ A Study of Surface Texturing and Boundary Slip on Improving the Load Support of Lubricated Parallel Sliding Contacts,” Acta Mech., 224(2), pp. 365–381. [CrossRef]
Tauviqirrahman, M. , Ismail, R. , Jamari, J. , and Schipper, D. J. , 2013, “ Combined Effect of Texturing and Boundary Slippage in Lubricated Sliding Contacts,” Tribol. Int., 66, pp. 274–281. [CrossRef]
Tauviqirrahman, M. , Muchammad , M., Ismail, R. , Jamari, J. , and Schipper, D. J. , 2014, “ Numerical Study of the Load-Carrying Capacity of Lubricated Parallel Sliding Textured Surfaces Including Wall Slip,” Tribol. Trans., 57(1), pp. 134–145. [CrossRef]
Ismail, S. , and Sarangi, M. , 2014, “ Effects of Texture Shape and Fluid–Solid Interfacial Slip on the Hydrodynamic Lubrication Performance of Parallel Sliding Contacts,” Proc. Inst. Mech. Eng. Part J, 228(4), pp. 382–396. [CrossRef]
Muchammad, M. , Tauviqirrahman, M. , Jamari, J. , and Schipper, D. J. , 2017, “ An Analytical Approach on the Tribological Behaviour of Pocketed Slider Bearings With Boundary Slip Including Cavitation,” Lubr. Sci., 29(3), pp. 133–152. [CrossRef]
Wu, C. , 2008, “ Performance of Hydrodynamic Lubrication Journal Bearing With a Slippage Surface,” Ind. Lubr. Tribol., 60(6), pp. 293–298. [CrossRef]
Wang, L. , Lu, C. , Wang, M. , and Fu, W. , 2012, “ The Numerical Analysis of Radial Sleeve Bearing With Combined Surface Slip,” Tribol. Int., 47, pp. 100–104. [CrossRef]
Fortier, A. E. , and Salant, R. F. , 2005, “ Numerical Analysis of a Journal Bearing With a Heterogeneous Slip/No-Slip Surface,” ASME J. Tribol., 127(4), pp. 820–825. [CrossRef]
Ma, G. J. , Wu, C. W. , and Zhou, P. , 2007, “ Wall Slip and Hydrodynamics of Two-Dimensional Journal Bearing,” Tribol. Int., 40(7), pp. 1056–1066. [CrossRef]
Ma, G. J. , Wu, C. W. , and Zhou, P. , 2008, “ Influence of Wall Slip on the Dynamic Properties of a Rotor-Bearing System,” Tribol. Trans., 51(2), pp. 204–212. [CrossRef]
Rao, T. V. V. L. N. , 2009, “ Theoretical Prediction of Journal Bearing Stability Characteristics Based on the Extent of the Slip Region on the Bearing Surface,” Tribol. Trans., 52(6), pp. 750–758. [CrossRef]
Wang, L. , and Lu, C. , 2015, “ Numerical Analysis of Spiral Oil Wedge Sleeve Bearing Including Cavitation and Wall Slip Effects,” Lubr. Sci., 27(3), pp. 193–207. [CrossRef]
Wang, L.-L. , Lu, C.-H. , Ge, P.-Q. , and Chen, S.-J. , 2012, “ Study on the Influence of Critical Shear Stress on Wall Slip of Spiral Oil Wedge Journal Bearing,” Proc. Inst. Mech. Eng. Part J, 226(5), pp. 362–376. [CrossRef]
Zhang, H. , Hua, M. , Dong, G. , Zhang, D. , and Chin, K.-S. , 2014, “ Boundary Slip Surface Design for High Speed Water Lubricated Journal Bearings,” Tribol. Int., 79, pp. 32–41. [CrossRef]
Chen, C.-Y. , Chen, Q.-D. , and Li, W.-L. , 2013, “ Characteristics of Journal Bearings With Anisotropic Slip,” Tribol. Int., 61, pp. 144–155. [CrossRef]
Brizmer, V. , and Kligerman, Y. , 2012, “ A Laser Surface Textured Journal Bearing,” ASME J. Tribol., 134(3), p. 031702. [CrossRef]
Tala-Ighil, N. , Maspeyrot, P. , Fillon, M. , and Bounif, A. , 2007, “ Effects of Surface Texture on Journal-Bearing Characteristics Under Steady-State Operating Conditions,” Proc. Inst. Mech. Eng. Part J, 221(6), pp. 623–633. [CrossRef]
Tala-Ighil, N. , Fillon, M. , and Maspeyrot, P. , 2011, “ Effect of Textured Area on the Performances of Hydrodynamic Journal Bearing,” Tribol. Int., 44(3), pp. 211–219. [CrossRef]
Tala-Ighil, N. , and Fillon, M. , 2015, “ A Numerical Investigation of Both Thermal and Texturing Surface Effects on the Journal Bearings Static Characteristics,” Tribol. Int., 90, pp. 228–239. [CrossRef]
Liang, X. , Liu, Z. , Wang, H. , Zhou, X. , and Zhou, X. , 2016, “ Hydrodynamic Lubrication of Partial Textured Sliding Journal Bearing Based on Three-Dimensional CFD,” Ind. Lubr. Tribol., 68(1), pp. 106–115. [CrossRef]
Jiang, Y. , Gao, Y. , and An, Q. , 2014, “ Dynamic Analysis of the Rotor Supported by Journal Bearing With Micro-Spherical Surface Texturing,” Proc. Inst. Mech. Eng. Part K, 228(4), pp. 355–365.
Kango, S. , Sharma, R. K. , and Pandey, R. K. , 2014, “ Comparative Analysis of Textured and Grooved Hydrodynamic Journal Bearing,” Proc. Inst. Mech. Eng. Part J, 228(1), pp. 82–95. [CrossRef]
Zhang, H. , Dong, G. , Hua, M. , Guo, F. , and Chin, K. S. , 2015, “ Parametric Design of Surface Textures on Journal Bearing,” Ind. Lubr. Tribol., 67(4), pp. 359–369. [CrossRef]
Yu, R. , Chen, W. , and Li, P. , 2016, “ The Analysis of Elastohydrodynamic Lubrication in the Textured Journal Bearing,” Proc. Inst. Mech. Eng. Part J, 230(10), pp. 1197–1208. [CrossRef]
Cupillard, S. , Glavatskih, S. , and Cervantes, M. J. , 2008, “ Computational Fluid Dynamics Analysis of a Journal Bearing With Surface Texturing,” Proc. Inst. Mech. Eng. Part J, 222(2), pp. 97–107. [CrossRef]
Li, J. , and Wang, X. , 2013, “ Numerical Simulation of the Influence of the Bulges Around Laser Surface Textures on the Tribological Performance,” Tribol. Trans., 56(6), pp. 1011–1018. [CrossRef]
Meng, F. , Wei, Z. , Minggang, D. , and Gao, G. , 2016, “ Study of Acoustic Performance of Textured Journal Bearing,” Proc. Inst. Mech. Eng. Part J, 230(2), pp. 156–169. [CrossRef]
Ausas, R. , Ragot, P. , Leiva, J. , Jai, M. , Bayada, G. , and Buscaglia, G. C. , 2007, “ The Impact of the Cavitation Model in the Analysis of Microtextured Lubricated Journal Bearings,” ASME J. Tribol., 129(4), pp. 868–875. [CrossRef]
Meng, F. M. , and Yang, T. , 2013, “ Preliminary Study on Mechanism of Cavitation in Lubricant of Textured Sliding Bearing,” Proc. Inst. Mech. Eng. Part J, 227(7), pp. 695–708. [CrossRef]
Meng, F. M. , Zhang, L. , and Long, T. , 2016, “ Effect of Groove Textures on the Performance of Gaseous Bubble in the Lubricant of Journal Bearing,” ASME J. Tribol., 139(3), p. 031701. [CrossRef]
Sinanoglu, C. , 2005, “ The Analysis of the Effects of Surface Texture on the Capability of Load Carriage of Journal Bearings Using Neural Network,” Ind. Lubr. Tribol., 57(1), pp. 28–40. [CrossRef]
Sinanoglu, C. , 2009, “ Investigation of Load Carriage Capacity of Journal Bearings by Surface Texturing,” Ind. Lubr. Tribol., 61(5), pp. 261–270. [CrossRef]
Lu, Y. , Liu, Y. , Wang, J. , and Liu, H. , 2014, “ Experimental Investigation Into Friction Performance of Dimples Journal Bearing With Phyllotactic Pattern,” Tribol. Lett., 55(2), pp. 271–278. [CrossRef]
Aurelian, F. , Patrick, M. , and Mohamed, H. , 2011, “ Wall Slip Effects in (Elasto) Hydrodynamic Journal Bearings,” Tribol. Int., 44(7–8), pp. 868–877. [CrossRef]
Lin, Q. , Wei, Z. , Wang, N. , and Chen, W. , 2015, “ Effect of Large-Area Texture/Slip Surface on Journal Bearing Considering Cavitation,” Ind. Lubr. Tribol., 67(3), pp. 216–226. [CrossRef]
Spikes, H. , and Granick, S. , 2003, “ Equation for Slip of Simple Liquids at Smooth Solid Surface,” Langmuir, 19(12), pp. 5065–5071. [CrossRef]
Choo, J. H. , Spikes, H. A. , Ratoi, M. , Glovnea, R. , and Forrest, A. , 2007, “ Friction Reduction in Low-Load Hydrodynamic Lubrication With a Hydrophobic Surface,” Tribol. Int., 40(2), pp. 154–159. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Geometry of partial slip texture slider bearing

Grahic Jump Location
Fig. 2

Partial slip parallel slider bearing: (a) nondimensional load capacity and (b) coefficient of friction

Grahic Jump Location
Fig. 3

Partial slip convergent slider bearing: (a) nondimensional load capacity and (b) coefficient of friction

Grahic Jump Location
Fig. 4

Partial texture parallel slider bearing: (a) nondimensional load capacity and (b) coefficient of friction

Grahic Jump Location
Fig. 5

Partial texture convergent slider bearing: (a) nondimensional load capacity and (b) coefficient of friction

Grahic Jump Location
Fig. 6

Partial slip texture parallel slider bearing (Xst = 0.5): (a) nondimensional load capacity and (b) coefficient of friction

Grahic Jump Location
Fig. 7

Partial slip texture convergent slider bearing (Xst = 0.5, Ht=1): (a) nondimensional load capacity and (b) coefficient of friction

Grahic Jump Location
Fig. 8

Geometry of partial slip texture journal bearing

Grahic Jump Location
Fig. 9

Partial slip concentric journal bearing: (a) nondimensional load capacity and (b) coefficient of friction

Grahic Jump Location
Fig. 11

Partial texture concentric journal bearing: (a) nondimensional load capacity and (b) coefficient of friction

Grahic Jump Location
Fig. 10

Partial slip convergent journal bearing: (a) nondimensional load capacity and (b) coefficient of friction

Grahic Jump Location
Fig. 12

Partial texture convergent journal bearing: (a) nondimensional load capacity and (b) coefficient of friction

Grahic Jump Location
Fig. 14

Partial slip texture convergent journal bearing (θst = 160 deg, Ht = 1): (a) nondimensional load capacity and (b) coefficient of friction

Grahic Jump Location
Fig. 13

Partial slip texture concentric journal bearing (θst = 160 deg): (a) nondimensional load capacity and (b) coefficient of friction

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In