0
Research Papers: Lubricants

The Application of Polyvinylpyrrolidone as a Modifier of Tribological Properties of Lubricating Greases Based on Linseed Oil

[+] Author and Article Information
Rafał Kozdrach

Institute of Sustainable Technologies,
NRI,
Radom, K. Pulaski 6/10,
Radom 26-600, Poland
e-mail: rafal.kozdrach@itee.radom.pl

Jarosław Skowroński

Institute of Sustainable Technologies,
NRI,
Radom, K. Pulaski 6/10,
Radom 26-600, Poland
e-mail: jaroslaw.skowronski@itee.radom.pl

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received November 15, 2017; final manuscript received April 18, 2018; published online May 28, 2018. Assoc. Editor: Dae-Eun Kim.

J. Tribol 140(6), 061801 (May 28, 2018) (7 pages) Paper No: TRIB-17-1439; doi: 10.1115/1.4040054 History: Received November 15, 2017; Revised April 18, 2018

The paper presents the research results on the relations between additive content and tribological, rheological, and oxidizing properties of lubricating greases. The greases were based on linseed oil, thickened with amorphous silica Aerosil® and modified with different concentration of polyvinylpyrrolidone. The greases were tested tribologically according to the test on T-02 testing machine and referred to the unmodified control. The evaluation of tribological properties was based on the following parameters: welding load, scuffing load, limiting load of wear, limiting load of scuffing, and limiting pressure of seizure. The results of tribological research revealed the most promising impact of the 3% addition of polyvinylpyrrolidone. All of the crucial parameters were improved in comparison to the unmodified control grease. The spectral analyses revealed that some of the components undergo oxidation during mechanical forces, leading to the formation of the oxidized organic compounds. These substances generated a layer, counteracting the wear of lubricated tribosystem. The improved resistance to oxidation of the tested lubricants with polyvinylpyrrolidone can be explained by the presence of highly hydrophilic pyrrolidone groups and hydrophobic alkyl group in polyvinylpyrrolidone (PVP) molecule. These compounds combine with hydrocarbon chains of linseed oil and act synergistically with the silicon dioxide molecules. The introduction of polyvinylpyrrolidone caused the improvement in dynamic viscosity at lower shear rates and a significant change of viscosity in low temperatures. An increased value of the yield point of the tested lubricating compositions after introduction of the additive was also observed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Czarny, R. , 2004, Smary plastyczne, Wydawnictwo Naukowo-Techniczne, Warszawa, Poland.
Sarnecki, A. , and Obrywalina, A. , 2006, Oleje i smary. Otrzymywanie i zastosowanie, KaBe, Krosno, Poland.
Podniadło, A. , 2002, Paliwa, oleje i smary w ekologicznej eksploatacji, Wydawnictwo Naukowo-Techniczne, Warszawa, Poland.
Bartz, W. J. , 2006, “ Ecotribology: Environmentally Acceptable Tribological Practices,” Tribol. Int., 39(8), pp. 728–733. [CrossRef]
Mortier, R. M. , Fox, M. F. , and Orszulik, S. T. , 2009, Chemistry and Technology of Lubricants, Springer, Dordrecht, The Netherlands.
Bloch, H. P. , 2000, Practical Lubrication for Industrial Facilities, Fairmont Press, New York. [CrossRef]
Lugt, P. M. , 2013, Grease Lubrication in Rolling Bearings, Wiley, London.
Mang, T. , 2014, Encyclopedia of Lubricants and Lubrication, Springer, Berlin. [CrossRef]
Mang, T. , and Dresel, W. , 2007, Lubricants and Lubrication, Wiley, Weinheim, Germany.
Ishchuk, Y. L. , 2008, Lubricating Grease Manufacturing Technology, New Age International, New Delhi, India.
Pirro, D. M. , Webster, M. , and Daschner, E. , 2016, Lubrication Fundamentals, 3rd ed., CRC Press, London.
Kozdrach, R. , Drabik, J. , Pawelec, E. , and Molenda, J. , 2010, “ Wpływ dodatku modyfikującego AR na właściwości tribologiczne ekologicznych smarów plastycznych,” Tribologia, 1, pp. 27–39.
Kozdrach, R. , and Molenda, J. , 2012, “ Testowanie właściwości eksploatacyjnych ekologicznych smarów plastycznych modyfikowanych dodatkiem polimerowo-krzemionkowym,” Tribologia, 6, pp. 99–111.
Kozdrach, R. , 2015, “ Wpływ synergizmu dodatków zawierających krzem na zmiany charakterystyk trybologicznych smaru plastycznego,” Nafta-Gaz, 2, pp. 110–118.
Kozdrach, R. , 2015, “ Zastosowanie montmorylonitu jako dodatku modyfikującego właściwości tribologiczne smaru plastycznego wytworzonego na bazie roślinnej,” Nafta-Gaz, 12, pp. 1029–1036. [CrossRef]
Kozdrach, R. , 2012, “ Wpływ nanododatków ceramicznych na charakterystyki tribologiczne biodegradowalnych smarów plastycznych,” Tribologia, 4, pp. 75–88.
Kozdrach, R. , Drabik, J. , Pawelec, E. , and Molenda, J. , 2010, “ Wpływ dodatku modyfikującego na bazie polimerowo-krzemionkowej oraz wymuszeń mechanicznych na właściwości fizykochemiczne ekologicznych smarów plastycznych,” Tribologia, 2, pp. 35–46.
Krawiec, S. , 2009, “ Wpływ rodzaju napełniacza w smarze plastycznym na efektywność smarowania w stalowych skojarzeniach ślizgowych,” Tribologia, 2, pp. 53–61.
Rizvi, S. Q. A. , 2009, A Comprehensive Review of Lubricant Chemistry, Technology, Selection and Design, ASTM International, West Conshohocken, Baltimore, MD. [CrossRef]
Yan, J. , Zeng, H. , Liu, T. , Mai, J. , and Ji, H. , 2016, “ Tribological Performance and Surface Analysis of a Borate Calcium as Additive in Lithium and Polyurea Greases,” Tribol. Trans., 60(4), pp. 621–628. [CrossRef]
Fan, X. , Xia, Y. , Wang, L. , and Li, W. , 2014, “ Multilayer Graphene as a Lubricating Additive in Bentone Grease,” Tribol. Lett., 55(3), pp. 455–464. [CrossRef]
Mohamed, A. , Osman, T. A. , Khattab, A. , and Zaki, M. , 2015, “ Tribological Behavior of Carbon Nanotubes as an Additive on Lithium Grease,” ASME J. Tribol., 137(1), p. 011801.
Margielewski, L. , Stanecka, R. , Partyka, S. , and Płaza, S. , 2006, “ The Adsorption of Zinc Dialkyldithiophosphates on Partially Stabilized Zirconia From Hydrocarbon Solution,” Tribol. Lett., 21(1), pp. 17–22. [CrossRef]
Sułek, M. W. , Sas, W. , Wasilewski, T. , Bąk, A. , and Żak, U. , 2011, “ Wpływ rodzaju i stężenia poliwinylopirolidonów na wybrane charakterystyki tribologiczne ich wodnych roztworów,” Tribologia, 3, pp. 129–141.
Bühler, V. , 2005, Polyvinylpyrrolidone Excipients for Pharmaceuticals: Povidone, Crospovidone and Copovidone, Springer, New York.
Tyliszczak, B. , and Pielichowski, K. , 2007, “ Charakterystyka matryc hydrożelowych—zastosowania biomedyczne superabsorbentów polimerowych,” Czas. Tech. Chem., 1, pp. 159–167.
Ruyin, M. , Dangsheng, X. , Feng, M. , Jinfeng, Z. , and Yan, P. , 2009, “ Friction Properties of Novel PVP/PVA Blend Hydrogels as Artificial Cartilage,” J. Biomed. Mater. Res., Part A, 93A(3), pp. 1016–1019.
Khatri, P. K. , Joshi, C. , Thakre, G. D. , and Jain, S. L. , 2016, “ Halogen-Free Ammonium–Organoborate Ionic Liquids as Lubricating Additives: The Effect of Alkil Chain Lengths on the Tribological Performance,” New J. Chem., 40(6), pp. 5294–5299. [CrossRef]
Szczerek, M. , and Tuszyński, W. , 2000, Badania tribologiczne. Zacieranie, ITeE, Radom, Poland.
Stachowiak, G. , and Batchelor, A. W. , 2007, Engineering Tribology, Elsevier, Oxford, UK.
Zheleznyi, L. V. , Bogaichuk, A. V. , Kobylyanskii, E. V. , and Mishchuk, O. A. , 2007, “ Antiwear Properties of High-Temperature Greases,” Chem. Technol. Fuels Oils, 43(6), pp. 488–494. https://link.springer.com/article/10.1007/s10553-007-0085-8
Brown, S. F. , 2015, Tribology & Lubrication Technology, STLE, Chicago, IL.
Oil and Gas Institute, 1976, “ Wojskowe Tymczasowe Wymagania Techniczne. Badanie właściwości przeciwzużyciowych materiałów pędnych i smarowych,” Oil and Gas Institute, Norma WTWT-94/MPS-025.
Military Technical Institute, 1994, “ Przetwory naftowe. Badanie własności smarnych olejów i smarów,” Military Technical Institute, Norma PN-76/C-04147.
Łubiński, J. , and Śliwiński, P. , 2015, “ Multi Parameter Sliding Test Result Evaluation for the Selection of Material Pair for Wear Resistant Components of a Hydraulic Motor Dedicated for Use With Environmentally Friendly Working Fluids,” Solid State Phenom., 225, pp. 115–122. [CrossRef]
Kozdrach, R. , Bajer, J. , and Drabik, J. , 2011, “ Wpływ rodzaju zagęszczacza na charakterystyki tribologiczne smarów plastycznych,” Tribologia, 1, pp. 73–83.
Kozdrach, R. , 2016, “ The Tribological Properties of Lubricating Greases Based on Renewable Oils,” Tribologia, 2, pp. 61–72.
Botella, L. , Bimbela, F. , Martin, L. , Arauzo, J. , and Sanchez, J. L. , 2014, “ Oxidation Stability of Biodiesel Fuels and Blends Using the Rancimat and PetroOXY Methods. Effect of 4-Allyl-2,6-Dimethyloxyphenol and Catechol as Biodiesel Additives on Oxidation Stability,” Front Chem., 2, pp. 43–45. [CrossRef] [PubMed]
Sicard, M. , Boulicault, J. , Coulon, K. , Thomasset, C. , Ancelle, J. , Raepsaet, B. , and Ser, F. , 2013, “ Oxidation Stability of Jet Fuel Model Molecules Evaluated by Rapid Small Scale Oxidation Tests,” 13th International Conference on Stability, Handling and Use of Liquid Fuels (IASH), Rhodes, Greece, Oct. 6–10. https://hal-onera.archives-ouvertes.fr/hal-01057478/document
Osawa, W. O. , Sahoo, P. K. , Onyari, J. M. , and Mulaa, F. J. , 2016, “ Effects of Antioxidants on Oxidation and Storage Stability of Croton Megalocarpus Biodiesel,” Int. J. Energy Environ. Eng., 7(1), pp. 85–91. [CrossRef]
Jones, R. A. L. , 2002, Soft Condensed Matter, Oxford University Press, Oxford, UK.

Figures

Grahic Jump Location
Fig. 1

The overview of T-02 tribosystem

Grahic Jump Location
Fig. 2

The PetroOxy apparatus for determination of oxidation stability

Grahic Jump Location
Fig. 3

Spectrophotometer FT-IR 6200

Grahic Jump Location
Fig. 4

The overview of rotational rheometer MCR 101 Anton Paar

Grahic Jump Location
Fig. 5

Welding load of tribosystem lubricated compositions produced on linseed oil and modified of different amount of PVP

Grahic Jump Location
Fig. 6

Limiting pressure of seizure of tribosystem lubricated compositions produced on linseed oil and modified of different amount of polyvinylpirolidone

Grahic Jump Location
Fig. 7

Scuffing load of tribosystem lubricated compositions produced on linseed oil and modified of different amount of polyvinylpyrrolidone

Grahic Jump Location
Fig. 8

Limiting load of scuffing of tribosystem lubricated compositions produced on linseed oils and modified of different amount of polyvinylpyrrolidone

Grahic Jump Location
Fig. 9

Limiting load of wear of tribosystem lubricated compositions produced on linseed oils and modified of different amount of polyvinylpyrrolidone

Grahic Jump Location
Fig. 10

The influence of different quantity of modifying agent on the oxidation resistance in 80 °C and 120 °C

Grahic Jump Location
Fig. 11

The influence of additive content to the change of the structure of (a) base grease and (b) grease modified with PVP

Grahic Jump Location
Fig. 12

The influence of diverse additive content on rheological properties of greases: (a) viscosity curves (viscosity versus shear rate), (b) viscosity curves (viscosity versus temperature), and (c) flow curves (shear stress versus shear rate)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In