0
Research Papers: Friction and Wear

Evaluation of Wear Resistance of Dental Chairside CAD/CAM Glass Ceramics Reinforced by Different Crystalline Phases

[+] Author and Article Information
Qianqian Zhang, Shanshan Gao, Chunxu Liu, Yuqing Lu

State Key Laboratory of Oral Diseases,
National Clinical Research Center for
Oral Diseases,
West China Hospital of Stomatology,
Sichuan University,
Chengdu 610041, China

Xin Chen

State Key Laboratory of
Oral Diseases,
National Clinical Research Center for
Oral Diseases,
West China Hospital of Stomatology,
Sichuan University,
Chengdu 610041, China

Haiyang Yu

State Key Laboratory of Oral Diseases,
National Clinical Research Center for
Oral Diseases,
West China Hospital of Stomatology,
Sichuan University,
Chengdu 610041, China
e-mail: yhyang6812@scu.edu.cn

1The authors contributed equally to the paper.

2Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received April 18, 2018; final manuscript received September 16, 2018; published online November 1, 2018. Assoc. Editor: Bart Raeymaekers.

J. Tribol 141(3), 031601 (Nov 01, 2018) (9 pages) Paper No: TRIB-18-1159; doi: 10.1115/1.4041536 History: Received April 18, 2018; Revised September 16, 2018

The mechanical properties of crystalline phase of glass ceramics are critical. This study aimed to evaluate wear resistance of different crystalline-reinforced dental chairside computer-aided design/computer-aided manufacturing (CAD/CAM) glass ceramics. Materials of feldspar (Vita Mark II, VM), leucite (IPS Empress CAD, EC), lithium disilicate (IPS e.max CAD, EX), lithium disilicate enriched with zirconia (Vita Suprinity, VS), and enamel were embedded, grounded, and polished, respectively. Samples were indented with a Vickers hardness tester to test the fracture resistance (KIC). Two-body wear tests were performed in a reciprocal ball-on-flat configuration under artificial saliva. The parameters of load force (50 N), reciprocating amplitude (500 μm), frequency (2 Hz), and the test cycle (10,000 cycles) were selected. Specimen microstructure, indentation morphology, and wear scars were observed by scanning electron microscope (SEM), optical microscopy, and three-dimensional profile microscopy. EX, VS, and EC demonstrated significantly higher KIC values than the enamel, while ceramic materials showed smaller wear depth results. Cracks, massive delamination, and shallow plow were seen on the enamel worn scar. Long deep plow, delamination, and brittle cracks are more common for VM and EC, and short shallow plow and smooth subsurface are the characteristics of EX and VS. Greater fracture toughness values indicated higher wear resistances of the materials for the test glass ceramics. The CAD/CAM glass ceramics performed greater wear resistance than enamel. Feldspar- and leucite-reinforced glass ceramics illustrated better wear resistance similar to enamel than lithium disilicate glass ceramics, providing amicable matching with the opposite teeth.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Anusavice, K. J. , 2012, “ Standardizing Failure, Success, and Survival Decisions in Clinical Studies of Ceramic and Metal–Ceramic Fixed Dental Prostheses,” Dent. Mater., 28(1), pp. 102–111. [CrossRef] [PubMed]
Höland, W. , Rheinberger, V. M. , Apel, E. , van't Hoen, C. , Höland, M. , Dommann, A. , Obrecht, M. , Mauth, C. , and Graf-Hausner, U. , 2006, “ Clinical Application of Glass-Ceramics in Dentistry,” J. Mater. Sci.-Mater. Med., 17(11), pp. 1037–1042. [CrossRef] [PubMed]
Li, R. W. K. , Chow, T. W. , and Matinlinna, J. P. , 2014, “ Ceramic Dental Biomaterials and CAD/CAM Technology: State of the Art,” J. Prosthodont. Res, 58(4), pp. 208–216. [CrossRef] [PubMed]
Heffernan, M. J. , Aquilino, S. A. , Diaz-Arnold, A. M. , Haselton, D. R. , Stanford, C. M. , and Vargas, M. A. , 2002, “ Relative Translucency of Six All Ceramic Systems—Part II: Core and Veneer Materials,” J. Prosthet. Dent., 88(1), pp. 10–15. [CrossRef] [PubMed]
Kelly, J. R. , and Benetti, P. , 2011, “ Ceramic Materials in Dentistry: Historical Evolution and Current Practice,” Aust. Dent. J., 56, pp. 84–96. [CrossRef] [PubMed]
Zimmer, S. , Gohlich, O. , and Ruttermann, S. , 2008, “ Long-Term Survival of Cerec Restorations: A 10-Year Study,” Oper. Dent., 33(5), pp. 484–487. [CrossRef] [PubMed]
Figueiredo-Pina, C. G. , Patas, N. , Canhoto, J. , Cláudio, R. , Olhero, S. M. , Serro, A. P. , Ferro, A. C. , and Guedes, M. , 2016, “ Tribological Behaviour of Unveneered and Veneered Lithium Disilicate Dental Material,” J. Mech. Behav. Biomed. Mater., 53, pp. 226–238. [CrossRef] [PubMed]
Chu, F. C. , Chow, T. W. , Chai, J. , and Liang, B. M. , 2007, “ Chemical Solubility and Flexural Strength of Zirconia-Based Ceramics,” Int. J. Prosthodontics, 20(6), pp. 587–595.
Tysowsky, G. W. , 2009, “ The Science Behind Lithium Disilicate: A Metal-Free Alternative,” Dent. Today, 28(3), pp. 112–113. [PubMed]
Elmaria, A. , Goldstein, G. , Vijayaraghavan, T. , Legeros, R. Z. , and Hittelman, E. L. , 2006, “ An Evaluation of Wear When Enamel Is Opposed by Various Ceramic Materials and Gold,” J. Prosthet. Dent., 96(5), pp. 345–353. [CrossRef] [PubMed]
Wang, L. , Liu, Y. , Si, W. , Feng, H. , Tao, Y. , and Ma, Z. , 2012, “ Friction and Wear Behaviors of Dental Ceramics Against Natural Tooth,” J. Eur. Ceram. Soc., 32(11), pp. 2599–2606. [CrossRef]
Chen, X. , Chadwick, T. C. , Wilson, R. M. , Hill, R. G. , and Cattell, M. J. , 2011, “ Crystallization and Flexural Strength Optimization of Fine-Grained Leucite Glass-Ceramics for Dentistry,” Dent. Mater., 27(11), pp. 1153–1161. [CrossRef] [PubMed]
Theocharopoulos, A. , Chen, X. , Wilson, R. M. , Hill, R. , and Cattell, M. J. , 2013, “ Crystallization of High-Strength Nano-Scale Leucite Glass-Ceramics,” Dent. Mater., 29(11), pp. 1149–1157. [CrossRef] [PubMed]
Lohbauer, U. , Müller, F. A. , and Petschelt, A. , 2008, “ Influence of Surface Roughness on Mechanical Strength of Resin Composite Versus Glass Ceramic Materials,” Dent. Mater., 24(2), pp. 250–256. [CrossRef] [PubMed]
Lawson, N. C. , Bansal, R. , and Burgess, J. O. , 2016, “ Wear, Strength, Modulus and Hardness of CAD/CAM Restorative Materials,” Dent. Mater., 32(11), pp. e275–e283. [CrossRef] [PubMed]
Addison, O. , Cao, X. , Sunnar, P. , and Fleming, G. J. P. , 2012, “ Machining Variability Impacts on the Strength of a ‘Chair-Side’ CAD–CAM Ceramic,” Dent. Mater., 28(8), pp. 880–887. [CrossRef] [PubMed]
Aurélio, I. L. , Fraga, S. , Dorneles, L. S. , Bottino, M. A. , and May, L. G. , 2015, “ Extended Glaze Firing Improves Flexural Strength of a Glass Ceramic,” Dent. Mater., 31(12), pp. e316–e324. [CrossRef] [PubMed]
Kim, M. J. , Oh, S. H. , Kim, J. H. , Ju, S. W. , Seo, D. G. , Jun, S. H. , Ahn, J. S. , and Ryu, J. J. , 2012, “ Wear Evaluation of the Human Enamel Opposing Different Y-TZP Dental Ceramics and Other Porcelains,” J. Dent., 40(11), pp. 979–988. [CrossRef] [PubMed]
Giordano, R. , and McLaren, E. A. , 2010, “ Ceramics Overview: Classification by Microstructure and Processing Methods,” Compend. Contin. Educ. Dent., 31(9), pp. 682–688. [PubMed]
Heintze, S. D. , Cavalleri, A. , Forjanic, M. , Zellweger, G. , and Rousson, V. , 2008, “ Wear of Ceramic and Antagonist—A Systematic Evaluation of Influencing Factors In Vitro,” Dent. Mater., 24(4), pp. 433–449. [CrossRef] [PubMed]
Coldea, A. , Swain, M. V. , and Thiel, N. , 2013, “ Mechanical Properties of Polymer-Infiltrated-Ceramic-Network Materials,” Dent. Mater., 29(4), pp. 419–426. [CrossRef] [PubMed]
Niihara , Morena, R. , and Hasselman, D. P. H. , 1982, “ Evaluation of KIC of Brittle Solids by the Indentation Method With Low Crack to Indent Ratios,” J. Mater. Sci. Lett., 1(1), pp. 13–16. [CrossRef]
Zheng, J. , Zeng, Y. , Wen, J. , Zheng, L. , and Zhou, Z. , 2016, “ Impact Wear Behavior of Human Tooth Enamel Under Simulated Chewing Conditions,” J. Mech. Behav. Biomed. Mater., 62, pp. 119–127. [CrossRef] [PubMed]
Ferrario, V. F. , Sforza, C. , Zanotti, G. , and Tartaglia, G. M. , 2004, “ Maximal Bite Forces in Healthy Young Adults as Predicted by Surface Electromyography,” J. Dent., 32(6), pp. 451–457. [CrossRef] [PubMed]
Gao, S. , Gao, S. S. , Xu, B. , and Yu, H. Y. , 2015, “ Effects of Different pH-Values on the Nanomechanical Surface Properties of PEEK and CFR-PEEK Compared to Dental Resin-Based Materials,” Materials, 8(8), pp. 4751–4767. [CrossRef] [PubMed]
Mehta, S. B. , Banerji, S. , Millar, B. J. , and Suarezfeito, J. M. , 2012, “ Current Concepts on the Management of Tooth Wear—Part 4. An Overview of the Restorative Techniques and Dental Materials Commonly Applied for the Management of Tooth Wear,” Br. Dent. J., 212, pp. 17–27. [CrossRef] [PubMed]
Xu, Z. , Yu, P. , Arola, D. D. , Min, J. , and Gao, S. S. , 2017, “ A Comparative Study on the Wear Behavior of a Polymer Infiltrated Ceramic Network (PICN) Material and Tooth Enamel,” Dent. Mater., 33(12), pp. 1351–1361. [CrossRef] [PubMed]
Bechtle, S. , Ozcoban, H. , Lilleodden, E. T. , Huber, N. , Schreyer, A. , Swain, M. V. , and Schneider, G. A. , 2012, “ Hierarchical Flexural Strength of Enamel: Transition From Brittle to Damage-Tolerant Behavior,” J. R. Soc. Interface, 9(71), pp. 1265–1274. [CrossRef] [PubMed]
Oh, W. , Delong, R. , and Anusavice, K. , 2002, “ Factors Affecting Enamel and Ceramic Wear: A Literature Review,” J. Prosthet. Dent., 87(4), pp. 451–459. [CrossRef] [PubMed]
Min, J. , Zhang, Q. Q. , Qiu, X. L. , Zhu, M. , Yu, H. Y. , and Gao, S. S. , 2015, “ Investigation on the Tribological Behavior and Wear Mechanism of Five Different Veneering Porcelains,” PLoS One, 10(9), p. e0137566. [CrossRef] [PubMed]
Seghi, R. R. , Rosenstiel, S. F. , and Bauer, P. , 1991, “ Abrasion of Human Enamel by Different Dental Ceramics In Vitro,” J. Dent. Res., 70(3), pp. 221–225. [CrossRef] [PubMed]
Scherrer, S. S. , Denry, L. L. , and Wiskott, A. H. W. , 1998, “ Comparison of Three Fracture Toughness Testing Techniques Using a Dental Glass and a Dental Ceramic,” Dent. Mater., 14(4), pp. 246–255. [CrossRef] [PubMed]
Fisher, H. , and Mars, R. , 2002, “ Fracture Toughness of Dental Ceramics: Comparison of Bending and Indentation Method,” Dent. Mater., 18, pp. 12–19. [CrossRef] [PubMed]
Zhang, Q. Q. , Gao, S. S. , Min, J. , Yu, D. D. , and Yu, H. Y. , 2016, “ Graded Viscoelastic Behavior of Human Enamel by Nanoindentation,” Mater. Lett., 179, pp. 126–129. [CrossRef]
Hu, S. F. , Chen, Z. , and Mecholsky, J. J. , 1996, “ On the Hertzian Fatigue Cone Crack Propagation in Ceramics,” Int. J. Fract., 79(3), pp. 295–307. [CrossRef]
Gao, S. S. , An, B. B. , Yahyazadehfar, M. , Zhang, D. S. , and Arola, D. D. , 2016, “ Contact Fatigue of Human Enamel: Experiments, Mechanisms and Modeling,” J. Mech. Behav. Biomed. Mater., 60, pp. 438–450. [CrossRef] [PubMed]
Ren, L. L. , and Zhang, Y. , 2014, “ Sliding Contact Fracture of Dental Ceramics: Principles and Validation,” Acta. Biomater., 10(7), pp. 3243–3253. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 3

Friction coefficients of four dental CAD/CAM glass ceramics and enamel under saliva lubrication

Grahic Jump Location
Fig. 4

Maximum depth for four glass ceramics and enamel

Grahic Jump Location
Fig. 5

Typical optical morphology of wear scars for (a) VM, (b) EC, (c) EX, and (d) VS

Grahic Jump Location
Fig. 2

Micrographs of cracks after Vickers indentation for (a) VM, (b) EC, (c) EX, (d) VS, and (e) enamel

Grahic Jump Location
Fig. 1

Scanning electron microscope micrographs showing the microstructure of (a) VM, (b) EC, (c) EX, and (d) VS

Grahic Jump Location
Fig. 6

Scanning electron microscope morphology of enamel worn surfaces: (a) at the edge of worn scar and (b) in the center of worn scar

Grahic Jump Location
Fig. 7

Scanning electron microscope characteristics in the center of worn surfaces for (a) VM, (b) EC, (c) EX, and (d) VS

Grahic Jump Location
Fig. 8

Scanning electron microscope morphology in the center of worn surfaces for enamel (a) at 2000 cycles and (d) at 5000 cycles, VM (b) at 2000 cycles and (e) at 5000 cycles, and EX (c) at 2000 cycles and (f) at 5000 cycles

Grahic Jump Location
Fig. 9

Simplified model of the wear processes in (a) VM and (b) EX

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In