0
Research Papers: Friction and Wear

Friction and Damage Evolution of the Borided CoCrMo Alloy

[+] Author and Article Information
R. C. Morón

Grupo Ingeniería de Superficies, SEPI ESIME Zacatenco, Instituto Politécnico Nacional,
U.P. Adolfo López Mateos, Zacatenco,
Ciudad de México 07738, México
e-mail: vega.moron@gmail.com

G. A. Rodríguez-Castro

Grupo Ingeniería de Superficies, SEPI ESIME Zacatenco, Instituto Politécnico Nacional,
U.P. Adolfo López Mateos, Zacatenco,
Ciudad de México 07738, México
e-mail: garodriguezc@ipn.mx

M. A. García Maldonado

Departamento de Mecatrónica,
Instituto Tecnológico Superior de Poza Rica,
Luis Donaldo Colosio Murrieta S/N,
Col. Arroyo del Maíz,
Poza Rica C.P. 93230, Veracruz, Mexico
e-mail: miguelgm_87@hotmail.com

A. Salazar-Gaona

Grupo Ingeniería de Superficies, SEPI ESIME Zacatenco, Instituto Politécnico Nacional,
U.P. Adolfo López Mateos, Zacatenco,
Ciudad de México 07738, México
e-mail: alan.ieme17@hotmail.com

D. Bravo-Bárcenas

Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías,
CONACYT—Universidad de Guadalajara,
Boulevard Marcelino García Barragán No. 1421,
Guadalajara 44430, Jalisco, México
e-mail: david.bravo@academicos.udg.mx

I. Campos-Silva

Grupo Ingeniería de Superficies, SEPI ESIME Zacatenco, Instituto Politécnico Nacional,
U.P. Adolfo López Mateos, Zacatenco,
Ciudad de México 07738, México
e-mail: icampos@ipn.mx

A. Palacios-Méndez

Departamento de Mecatrónica,
Instituto Tecnológico Superior de Poza Rica,
Luis Donaldo Colosio Murrieta S/N, Col.
Arroyo del Maíz,
Poza Rica C.P. 93230, Veracruz, Mexico
e-mail: ingpalacios10@hotmail.com

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the Journal of Tribology. Manuscript received March 12, 2019; final manuscript received May 18, 2019; published online June 6, 2019. Assoc. Editor: Longqiu Li.

J. Tribol 141(8), 081602 (Jun 06, 2019) (8 pages) Paper No: TRIB-19-1101; doi: 10.1115/1.4043851 History: Received March 12, 2019; Accepted May 19, 2019

In this study, friction and evolution of cohesive failures (cracks and spallations) in CoB/Co2B layers were analyzed. Thermochemical treatment was carried out at 950, 975, and 1000 °C during 6, 8, and 10 h of exposure time, respectively. The characterization techniques include scanning electron microscopy (SEM) for morphology inspection of layers and thickness measurement, X-ray diffraction for the investigation of phases formed, and instrumented indention to obtain hardness, Young’s modulus, and residual stresses. The practical adhesion of the boride layers was evaluated by a progressive load scratch test (PLST), and the critical loads of cracking, chipping, and spallation were calculated. Later, unidirectional multipass scratch tests (MPSTs) were performed by applying subcritical loads selected from the lower spallation load (54 N); these tests were conducted for a different number of scratch passes. The results show that the coefficient of friction (COF) and coating damage depend on the applied load, the number of passes, and coating thickness. In multipass scratch, the mechanical properties, residual stress state, and thickness play a significant role in the evolution of the coating damage that manifests in the form of cracks and cohesive spallations. Considering the scratch and multipass scratch results, it was found that the sample with 10 h of exposure time presents a better performance among the samples.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Campos-Silva, I., Bravo-Bárcenas, D., Meneses-Amador, A., Ortiz-Dominguez, M., Cimenoglu, H., Figueroa-López, U., and Andraca-Adame, J., 2013, “Growth Kinetics and Mechanical Properties of Boride Layers Formed at the Surface of the ASTM F-75 Biomedical Alloy,” Surf. Coat. Technol., 237, pp. 402–414. [CrossRef]
Mu, D., Shen, B., and Zhao, X., 2010, “Effects of Boronizing on Mechanical and Dry-Sliding Wear Properties of CoCrMo Alloy,” Mater. Des., 31(8), pp. 3933–3936. [CrossRef]
Campos-Silva, I., Bravo-Bárcenas, D., Cimenoglu, H., Figueroa-López, U., Flores-Jiménez, M., and Meydanoglu, O., 2014, “The Boriding Process in CoCrMo Alloy: Fracture Toughness in Cobalt Boride Coatings,” Surf. Coat. Technol., 260, pp. 362–368. [CrossRef]
Campos-Silva, I., Bravo-Bárcenas, D., Flores-Jiménez, M., Arzate-Vázquez, I., López-García, C., and Bernabé-Molina, S., 2015, “Diffusion Boride Coatings in CoCrMo Alloy and Some Indentation Properties,” Metallogr. Microstruct. Anal., 4(3), pp. 158–168. [CrossRef]
Rodríguez-Castro, G. A., Reséndiz-Calderon, C. D., Jiménez-Tinoco, L. F., Meneses-Amador, A., Gallardo-Hernández, E. A., and Campos-Silva, I. E., 2015, “Micro-Abrasive Wear Resistance of CoB/Co2B Coatings Formed in CoCrMo Alloy,” Surf. Coat. Technol., 284, pp. 258–263. [CrossRef]
Bravo-Bárcenas, D., Campos-Silva, I., Cimenoglu, H., Martínez-Trinidad, J., Flores-Jiménez, M., and Martinez-Gutiérrez, H., 2016, “Characterisation of CoB–Co2B Coatings by the Scratch Test,” Surf. Eng., 32(8), pp. 570–577. [CrossRef]
Bull, S. J., and Rickerby, D. S., 1989, “Multi-Pass Scratch Testing as a Model for Abrasive Wear,” Thin Solid Films, 181(1–2), pp. 545–553. [CrossRef]
Cicek, H., Baran, O., Keles, A., Totik, Y., and Efeoglu, I., 2017, “A Comparative Study of Fatigue Properties of TiVN and TiNbN Thin Films Deposited on Different Substrates,” Surf. Coat. Technol., 332, pp. 296–303. [CrossRef]
Yıldız, F., Alsaran, A., Çelik, A., and Efeoğlu, İ., 2010, “Multipass Scratch Test Behaviour of TiAlN Thin Film Deposited on 316L Stainless Steel and Ti6Al4 V Alloy With DC Biased and Pulsed Magnetron Sputtering,” Surf. Eng., 26(8), pp. 578–583. [CrossRef]
Kataria, S., Kumar, N., Dash, S., Ramaseshan, R., and Tyagi, A. K., 2010, “Evolution of Deformation and Friction During Multimode Scratch Test on TiN Coated D9 Steel,” Surf. Coat. Technol., 205(3), pp. 922–927. [CrossRef]
Savaş, S., and Danişman, Ş., 2014, “Multipass Sliding Wear Behavior of TiAlN Coatings Using a Spherical Indenter: Effect of Coating Parameters and Duplex Treatment,” Tribol. Trans., 57(2), pp. 242–255. [CrossRef]
Stallard, J., Poulat, S., and Teer, D. G., 2006, “The Study of the Adhesion of a TiN Coating on Steel Titanium Alloy Substrates Using a Multi-Mode Scratch Tester,” Tribol. Int., 39(2), pp. 159–166. [CrossRef]
Anand, M., Burmistroviene, G., Tudela, I., Verbickas, R., Lowman, G., and Zhang, Y., 2017, “Tribological Evaluation of Soft Metallic Multilayer Coatings for Wear Applications Based on a Multiple Pass Scratch Test Method,” Wear, 388–389, pp. 39–46. [CrossRef]
Bidev, F., Baran, Ö., Arslan, E., Totik, Y., and Efeoğlu, İ., 2013, “Adhesion and Fatigue Properties of Ti/TiB2/MoS2 Graded-Composite Coatings Deposited by Closed-Field Unbalanced Magnetron Sputtering,” Surf. Coat. Technol., 215, pp. 266–271. [CrossRef]
Baran, Ö., Sukuroglu, E. E., Efeoglu, İ., and Totik, Y., 2016, “The Investigation of Adhesion and Fatigue Properties of TiN/TaN Multilayer Coatings,” J. Adhes. Sci. Technol., 30(20), pp. 2188–2200. [CrossRef]
Baran, Ö., 2017, “Adhesion and Fatigue Resistance of Ta-Doped MoS2 Composite Coatings Deposited With Pulsed-DC Magnetron Sputtering,” J. Adhes. Sci. Technol., 31(11), pp. 1181–1195. [CrossRef]
Allaoui, O., Bouaouadja, N., and Saindernan, G., 2006, “Characterization of Boronized Layers on a XC38 Steel,” Surf. Coat. Technol., 201(6), pp. 3475–3482. [CrossRef]
Vega-Morón, R. C., Rodríguez-Castro, G. A., Jiménez-Tinoco, L. F., Meneses-Amador, A., Méndez-Méndez, J. V., Escobar-Hernández, J., Reséndiz-Calderón, C. D., and Nava-Sánchez, J. L., 2018, “Multipass Scratch Behavior of Borided and Nitrided H13 Steel,” J. Mater. Eng. Perform., 27(8), pp. 3886–3899. [CrossRef]
Oliver, W. C., and Pharr, G. M., 1992, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7(6), pp. 1564–1583. [CrossRef]
Chen, K.-S., Chen, T.-C., and Ou, K.-S., 2008, “Development of Semi-Empirical Formulation for Extracting Materials Properties From Nanoindentation Measurements: Residual Stresses, Substrate Effect, and Creep,” Thin Solid Films, 516(8), pp. 1931–1940. [CrossRef]
Leyland, A., and Matthews, A., 2000, “On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour,” Wear, 246(1–2), pp. 1–11. [CrossRef]
Meneses-Amador, A., Blancas-Pérez, D., Corpus-Mejía, R., Rodríguez-Castro, G. A., Martínez-Trinidad, J., and Jiménez-Tinoco, L. F., 2018, “Adhesive and Cohesive Strength in FeB/Fe2B Systems,” J. Mater. Eng. Perform., 27(5), pp. 2089–2098. [CrossRef]
Campos-Silva, I., Ortiz-Domínguez, M., Tapia-Quintero, C., Rodríguez-Castro, G., Jiménez-Reyes, M. Y., and Chávez-Gutiérrez, E., 2012, “Kinetics and Boron Diffusion in the FeB/Fe2B Layers Formed at the Surface of Borided High-Alloy Steel,” J. Mater. Eng. Perform., 21(8), pp. 1714–1723. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Scanning electron microscope micrographs of the CoCrMo alloy subjected to the boriding process: (a) 6 h—950 °C, (b) 8 h—975 °C, and (c) 10 h—1000 °C

Grahic Jump Location
Fig. 2

X-ray diffraction patterns obtained at the surface of borided CoCrMo alloy samples

Grahic Jump Location
Fig. 3

(a) Hardness and H/E profile across the borided samples and (b) residual stress profiles along the borided samples

Grahic Jump Location
Fig. 4

Scratch results of the B6 sample: (a) scratch track, (b) COF and residual depth behavior, (c) spallation failure detail, and (d) cross-sectional residual depth of the spallation

Grahic Jump Location
Fig. 5

Scratch results of the B8 sample: (a) scratch track, (b) COF and residual depth behavior, (c) spallation failure detail, and (d) cross-sectional residual depth of the spallation

Grahic Jump Location
Fig. 6

Scratch results of the B10 sample: (a) scratch track, (b) COF and residual depth behavior, (c) spallation failure detail, and (d) cross-sectional residual depth of the spallation

Grahic Jump Location
Fig. 7

The relationship between the coefficient of friction and the number of scratch passes with applied load of (a) 20 N, (b) 25 N, and (c) 30 and 35 N

Grahic Jump Location
Fig. 8

Optical micrographs showing the evolution of coating damage during selected stages of the MPST carried out in (a) B6, (b) B8, and (c) B10. The numbers at the left denote the number of scratch passes, and the applied load is shown for each sample.

Grahic Jump Location
Fig. 9

(a) Cross-sectional plots at the center of the worn track obtained after the multipass scratch test with different loads and (b) volume loss after the multipass scratch test

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In