Due to their extraordinary electrical, thermal and mechanical properties, carbon nanotubes have been foreseen as potential materials for electronics devices in the future. To integrate carbon nanotubes in electronic applications, carbon nanotubes would need to be grown on different metal layer. In this study, carbon nanotubes growth with Ni as catalyst on three different support layers, Cu, Al and Cr, by hot filament chemical vapor deposition (HFCVD) is reported. The nanotubes were grown using C2H2 acetylene as carbon feedstock, in a hydrogen and nitrogen atmosphere. The catalyst layers and their support layers were deposited by magnetron sputtering technique. Deposited films were annealed at 600 °C for 10 minutes before exposing to C2H2 for the growth of nanotubes at same temperature for another 10 minutes. The effects of the support layer have been investigated with reference to nanotubes formation. The morphology and microstructure of the films were measured and analyzed by scanning electron microscopy (SEM) and Raman spectrometer. It was found that reaction of the catalyst with its supporting layer has significant effects on the growth of nanotubes. For Cu or Cr as support layer, its effect on the nanotubes growth was minimal. However Al support layer prevented the growth of carbon nanotubes. The possible mechanisms for the observed results are proposed.

1.
Iijima
S.
,
Nature
354
,
56
56
(
1991
).
2.
Yang
D. J.
,
Wang
S. G.
,
Zhang
Q.
,
Sellin
P. J.
and
Chen
G.
,
Phy. Lett. A
329
,
207
207
(
2004
).
3.
Treacy
M. M. J.
,
Ebbesen
T. W.
and
Gilson
J. M.
,
Nature (London)
381
,
678
678
(
1996
).
4.
Yi
W.
,
Lu
L.
,
Zhang
D. L.
,
Pan
Z. W.
and
Xie
S. S.
,
Phys. Rev. B
59
,
R9015
R9015
(
1999
).
5.
Novak
J. P.
,
Lay
M. D.
,
Perkins
F. K.
and
Snow
E. S.
Solid-State Ele.
48
,
1753
1753
(
2004
).
6.
Tsukagoshi
K.
,
Yoneya
N.
,
Uryu
S.
,
Aoyagi
Y.
,
Kanda
A.
,
Ootuka
Y.
and
Alphenaar
B. W.
Phy. B: Condensed Matter.
323
,
107
107
(
2002
).
7.
de los Arcos
T.
,
Garnier
M. G.
,
Oelhafen
P.
,
Mathys
D.
,
Seo
J. W.
,
Domingo
C.
,
Vicente
J.
,
Ramos
G.
and
Corte´s
S. S.
,
Carbon
42
,
187
187
(
2004
).
8.
de los Arcos
T.
,
Wu
Z. M.
and
Oelhafen
P.
,
Chem. Phys. Lett.
380
,
419
419
(
2003
).
9.
Rodriguez
N. M.
,
Kim
M. S.
, and
Baker
R. T. K.
,
J. Catal.
140
,
16
16
(
1993
).
10.
Singh
M. K.
,
Singh
P. P.
,
Titus
E.
,
Misra
D. S.
, and
LeNormand
F.
,
Chem. Phys. Lett.
354
,
331
331
(
2002
).
11.
Ajayan
P. M.
and
Marks
L. D.
,
Nature
338
,
139
139
(
1989
).
12.
Vitos
L.
,
Ruban
A. V.
,
Skriver
H. L.
and
Kolla´r
J.
,
Scr. Sci.
411
,
186
186
(
1998
)
13.
Zhao
X.
,
Ando
Y.
,
Qin
L. C.
,
Kataura
H.
,
Maniwa
Y.
and
Saito
R.
,
Appl. Phys. Lett.
81
,
2550
2550
(
2002
).
14.
Dresselhaus
M. S.
,
Dresselhaus
G.
,
Saito
R.
and
Jorio
A.
,
Phys. Reports
409
,
47
47
(
2005
).
15.
Jong
W. J.
,
Lai
S. H.
,
Hong
K. H.
,
Lin
H. N.
, and
Shih
H. C.
,
Diamond and Related Materials
,
11
,
1019
1019
(
2002
).
16.
Chen
X.
,
Zhang
S.
,
Dikin
D. A.
,
Ding
W.
,
Ruoff
R. S.
,
Pan
L.
and
Nakayama
Y.
,
Nano Lett
3
,
1299
1299
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.