The direct steam generation (DSG) is an attractive option regarding the economic improvement of parabolic trough technology for solar thermal electricity generation in the multi megawatt range. According to [1] and [2] a 10% reduction of the LEC is expected compared to conventional SEGS like parabolic trough power plants. The European DISS project has proven the feasibility of the DSG process under real solar conditions at pressures up to 100 bar and temperatures up to 400°C in more than 4000 operation hours [3]. In a next step the detailed engineering for a pre-commercial DSG solar thermal power plant will be performed. This detailed engineering of the collector field requires the consideration of the occurring thermohydraulic phenomena and their influence on the stability of the absorber tubes. A design tool has been developed at DLR calculating all relevant process parameters including pressure drop, temperature field and stress in the absorber tubes. The models implemented in this design tool have been validated in detail at the DISS test facility under real DSG conditions for pressures between 30 and 100 bar and inner diameters between 50 and 85 mm. The models have been implemented into a MATLAB® program to allow for a first quick determination of critical process conditions. Once critical process conditions have been identified the FEM package ANSYS® is used for a detailed investigation. This article summarises the models used and shows the design procedure for a DSG collector field. The design program has proven to be a reliable tool for the detailed design of DSG collector fields.
Skip Nav Destination
ASME 2004 International Solar Energy Conference
July 11–14, 2004
Portland, Oregon, USA
Conference Sponsors:
- Solar Energy Division
ISBN:
0-7918-3747-5
PROCEEDINGS PAPER
Modeling and Design of Direct Solar Steam Generating Collector Fields
M. Eck,
M. Eck
German Aerospace Centre, Stuttgart, Germany
Search for other works by this author on:
W.-D. Steinmann
W.-D. Steinmann
German Aerospace Centre, Stuttgart, Germany
Search for other works by this author on:
M. Eck
German Aerospace Centre, Stuttgart, Germany
W.-D. Steinmann
German Aerospace Centre, Stuttgart, Germany
Paper No:
ISEC2004-65040, pp. 615-624; 10 pages
Published Online:
December 17, 2008
Citation
Eck, M, & Steinmann, W. "Modeling and Design of Direct Solar Steam Generating Collector Fields." Proceedings of the ASME 2004 International Solar Energy Conference. Solar Energy. Portland, Oregon, USA. July 11–14, 2004. pp. 615-624. ASME. https://doi.org/10.1115/ISEC2004-65040
Download citation file:
23
Views
0
Citations
Related Proceedings Papers
Related Articles
Study of Using Solar Thermal Power for the Margarine Melting Heat Process
J. Sol. Energy Eng (April,2015)
The DISS Project: Direct Steam Generation in Parabolic Trough Systems. Operation and Maintenance Experience and Update on Project Status
J. Sol. Energy Eng (May,2002)
A Message From the Guest Editors
J. Sol. Energy Eng (February,2008)
Related Chapters
Introduction
ASME International Steam Tables for Industrial Use, Third Edition
Engineering and Physical Modeling of Power Plant Cooling Systems
Thermal Power Plant Cooling: Context and Engineering
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies