Abstract

A hybrid desiccant system using aqueous lithium chloride was studied by simulation, laboratory test, and field tests. This paper presents field test of a hybrid solar liquid desiccant cooling system conducted at a test house at the University of Florida’s Energy Research and Education Park. These tests consisted of operating the air conditioning system at the test house in two configurations: the conventional vapor compression system and the hybrid desiccant system. For each configuration the system was operated in two modes: recirculation, and 100% ventilation air.

Experiments were conduct to study the influence of the air mass flow rate, temperature of the inlet air, temperature of the desiccant, and desiccant mass flow rate on the performance of both system configurations.

Based on the field test results it was found that the hybrid desiccant system improves the air conditioning performance in the field test house by decreasing the outlet humidity and temperature of the air. It was also found that the hybrid desiccant cooling system is more cost effective for the case 100% fresh air ventilation than recirculation.

This content is only available via PDF.
You do not currently have access to this content.