This paper presents a comparison of Volume-of-Fluid simulation results with experiments [1] for two-phase flow and heat transfer in a micro channel. Mass transfer between the phases is modeled using a reduced-order model, requiring the definition of a time relaxation constant, r. A two-step solution procedure is used, where first a fixed temperature boundary condition is imposed at the heater to avoid overheating of the device during the initial development of the two-phase flow. After obtaining a quasi-steady-state solution this is changed to a heat flux boundary condition to determine the final solution. Results using three different values for r indicate that the value of the constant should vary throughout the domain. A final simulation where r is defined as a function of the streamwise location results in a prediction of the base temperature within 1K of the experimental result, a pressure drop within 30%, and a prediction of the location of transition from subcooled to saturated flow within 2mm.
- Electronic and Photonic Packaging Division
Validation Study for VOF Simulations of Boiling in a Microchannel
Gorlé, C, Lee, H, Houshmand, F, Asheghi, M, Goodson, K, & Parida, PR. "Validation Study for VOF Simulations of Boiling in a Microchannel." Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 3: Advanced Fabrication and Manufacturing; Emerging Technology Frontiers; Energy, Health and Water- Applications of Nano-, Micro- and Mini-Scale Devices; MEMS and NEMS; Technology Update Talks; Thermal Management Using Micro Channels, Jets, Sprays. San Francisco, California, USA. July 6–9, 2015. V003T10A022. ASME. https://doi.org/10.1115/IPACK2015-48129
Download citation file: