Abstract

Similar to Poisson’s effect, mechanical coupling is a directional indirect response by a directional input loading. With the advance in manufacturing techniques of 3D complex geometry, architected materials with unit cells of finite volume rather than a point yield more degrees-of-freedom and foster exotic mechanical couplings such as axial–shear, axial–rotation, axial–bending, and axial–twisting. However, most structural materials have been built by the ad hoc design of mechanical couplings without theoretical support of elasticity, which does not provide general guidelines for mechanical couplings. Moreover, no comprehensive study of all the mechanical couplings of 3D lattices with symmetry operations has been undertaken. Therefore, we construct the decoupled micropolar elasticity tensor of 3D lattices to identify individual mechanical couplings correlated with the point groups. The decoupled micropolar elasticity tensors, classified with 32 point groups, provide 15 mechanical couplings for 3D lattices. Our findings help provide solid theoretical guidelines for the mechanical couplings of 3D structural materials with potential applications in various areas, including active metamaterials, sensors, actuators, elastic waveguides, and acoustics.

References

1.
Lakes
,
R. S.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
2.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
2014
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
New York
, pp.
1
532
.
3.
Kim
,
K.
,
Heo
,
H.
, and
Ju
,
J.
,
2018
, “
A Mechanism-Based Architected Material: A Hierarchical Approach to Design Poisson’s Ratio and Stiffness
,”
Mech. Mater.
,
125
, pp.
14
25
.
4.
Kim
,
K.
,
Lee
,
J.
,
Ju
,
J.
, and
Kim
,
D.-M. M.
,
2014
, “
Compliant Cellular Materials With Compliant Porous Structures: A Mechanism Based Materials Design
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
3889
3903
.
5.
Fu
,
M.
,
Liu
,
F.
, and
Hu
,
L.
,
2018
, “
A Novel Category of 3D Chiral Material With Negative Poisson’s Ratio
,”
Compos. Sci. Technol.
,
160
, pp.
111
118
.
6.
Lakes
,
R. S.
,
2017
, “
Negative-Poisson’s-Ratio Materials: Auxetic Solids
,”
Annu. Rev. Mater. Res.
,
47
(
1
), pp.
63
81
.
7.
Liu
,
X. N.
,
Huang
,
G. L.
, and
Hu
,
G. K.
,
2012
, “
Chiral Effect in Plane Isotropic Micropolar Elasticity and Its Application to Chiral Lattices
,”
J. Mech. Phys. Solids
,
60
(
11
), pp.
1907
1921
.
8.
Yuan
,
Z.
,
Cui
,
Z.
, and
Ju
,
J.
,
2021
, “
Micropolar Homogenization of Wavy Tetra-Chiral and Tetra-Achiral Lattices to Identify Axial–Shear Coupling and Directional Negative Poisson’s Ratio
,”
Mater. Des.
,
201
, p.
109483
.
9.
Frenzel
,
T.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2017
, “
Three-Dimensional Mechanical Metamaterials With a Twist
,”
Science
,
358
(
6366
), pp.
1072
1074
.
10.
Lakes
,
R. S.
, and
Benedict
,
R. L.
,
1982
, “
Noncentrosymmetry in Micropolar Elasticity
,”
Int. J. Eng. Sci.
,
20
(
10
), pp.
1161
1167
.
11.
Cui
,
Z.
,
Liang
,
Z.
, and
Ju
,
J.
,
2022
, “
A Non-Centrosymmetric Square Lattice With an Axial–Bending Coupling
,”
Mater. Des.
,
216
, p.
110532
.
12.
Poisson
,
S. D.
,
1829
, “
Mémoire sur L’équilibre et le Mouvement des Corps élastiques
,”
Mémoires de l’Académie Royal des Sciences de l’Institut de France
,
8
, pp.
357
570
.
13.
Li
,
X.
,
Yang
,
Z.
, and
Lu
,
Z.
,
2019
, “
Design 3D Metamaterials With Compression-Induced-Twisting Characteristics Using Shear–Compression Coupling Effects
,”
Extreme Mech. Lett.
,
29
, p.
100471
.
14.
Lekhnitskii
,
S. G.
,
Fern
,
P.
,
Brandstatter
,
J. J.
, and
Dill
,
E. H.
,
1964
, “
Theory of Elasticity of an Anisotropic Elastic Body
,”
Phys. Today
,
17
(
1
), pp.
84
84
.
15.
Danier
,
I. M.
, and
Ishai
,
O.
,
2005
,
Engineering Mechanics of Composite Materials
, 2nd ed.,
Oxford Press
,
New York
, pp.
1
528
.
16.
York
,
C. B.
,
2010
, “
Unified Approach to the Characterization of Coupled Composite Laminates: Benchmark Configurations and Special Cases
,”
J. Aerosp. Eng.
,
23
(
4
), pp.
219
242
.
17.
Tilley
,
R. J. D.
,
2006
,
Crystals and Crystal Structures
,
Wiley
,
New York
, pp.
1
255
.
18.
Prall
,
D.
, and
Lakes
,
R. S.
,
1997
, “
Properties of Chiral Honeycombe With Poisson’s Ratio of -1
,”
Int. J. Mech. Sci.
,
39
(
3
), pp.
305
314
.
19.
Newnham
,
R. E.
,
2005
,
Properties of Materials: Anisotropy, Symmetry, Structure
,
Oxford University Press
,
New York
, pp.
1
378
.
20.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
, “
Théorie des Corps déformables
,”
Nature
,
81
(
2072
), pp.
67
67
.
21.
Eringen
,
A. C.
,
1999
,
Microcontinuum Field Theories
,
Springer
,
New York
, pp.
1
340
.
22.
Eringen
,
A. C.
,
1967
, “
Linear Theory of Micropolar Viscoelasticity
,”
Int. J. Eng. Sci.
,
5
(
2
), pp.
191
204
.
23.
Askar
,
A.
, and
Cakmak
,
A. S.
,
1968
, “
A Structural Model of a Micropolar Continuum
,”
Int. J. Eng. Sci.
,
6
(
10
), pp.
583
589
.
24.
Hasanyan
,
A. D.
, and
Waas
,
A. M.
,
2016
, “
Micropolar Constitutive Relations for Cellular Solids
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041001
.
25.
Cui
,
Z.
, and
Ju
,
J.
,
2022
, “Mechanical Coupling Effects of 2D Lattices Uncovered by Decoupled Micropolar Elasticity Tensor and Symmetry Operation,” Mendeley Data, Accepted:MPS-D-22-00318R2.
26.
Duan
,
S.
,
Wen
,
W.
, and
Fang
,
D.
,
2018
, “
A Predictive Micropolar Continuum Model for a Novel Three-Dimensional Chiral Lattice With Size Effect and Tension-Twist Coupling Behavior
,”
J. Mech. Phys. Solids
,
121
, pp.
23
46
.
27.
Onck
,
P. R.
,
2002
, “
Cosserat Modeling of Cellular Solids
,”
C.R. Mec.
,
330
(
11
), pp.
717
722
.
28.
Cui
,
Z.
, and
Ju
,
J.
,
2022
,
Mechanical Coupling of 3D Lattice Materials Discovered by Micropolar Elasticity and Geometric Symmetry, Mendeley Data
.
29.
Mousanezhad
,
D.
,
Haghpanah
,
B.
,
Ghosh
,
R.
,
Hamouda
,
A. M.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2016
, “
Elastic Properties of Chiral, Anti-Chiral, and Hierarchical Honeycombs: A Simple Energy-Based Approach
,”
Theor. Appl. Mech. Lett.
,
6
(
2
), pp.
81
96
.
30.
Lovett
,
D. R.
,
2005
, “Crystal Tensors: Introduction,”
Encyclopedia of Condensed Matter Physics
,
F.
Bassani
,
G. L.
Liedl
, and
P.
Wyder
, eds.,
Elsevier
,
New York
, pp.
329
336
.
31.
Veber
,
D.
, and
Taliercio
,
A.
,
2012
, “
Topology Optimization of Three-Dimensional Non-Centrosymmetric Micropolar Bodies
,”
Struct. Multidiscipl. Optim.
,
45
(
4
), pp.
575
587
.
32.
Qu
,
J.
,
Kadic
,
M.
,
Naber
,
A.
, and
Wegener
,
M.
,
2017
, “
Micro-Structured Two-Component 3D Metamaterials With Negative Thermal-Expansion Coefficient From Positive Constituents
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.
33.
Chen
,
Y.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
Q. P.
, and
Zheng
,
Q. S.
,
2014
, “
Micropolar Continuum Modelling of Bi-Dimensional Tetrachiral Lattices
,”
Proc. R. Soc. A
,
470
(
2165
), p.
20130734
.
34.
Jenett
,
B.
,
Cameron
,
C.
,
Tourlomousis
,
F.
,
Rubio
,
A. P.
,
Ochalek
,
M.
, and
Gershenfeld
,
N.
,
2020
, “
Discretely Assembled Mechanical Metamaterials
,”
Sci. Adv.
,
6
(
47
), p.
eabc9943
.
35.
Wu
,
W.
,
Geng
,
L.
,
Niu
,
Y.
,
Qi
,
D.
,
Cui
,
X.
, and
Fang
,
D.
,
2018
, “
Compression Twist Deformation of Novel Tetrachiral Architected Cylindrical Tube Inspired by Towel Gourd Tendrils
,”
Extreme Mech. Lett.
,
20
, pp.
104
111
.
36.
Ma
,
C.
,
Lei
,
H.
,
Hua
,
J.
,
Bai
,
Y.
,
Liang
,
J.
, and
Fang
,
D.
,
2018
, “
Experimental and Simulation Investigation of the Reversible Bi-Directional Twisting Response of Tetra-Chiral Cylindrical Shells
,”
Compos. Struct.
,
203
, pp.
142
152
.
37.
Goda
,
I.
,
Assidi
,
M.
, and
Ganghoffer
,
J. F.
,
2014
, “
A 3D Elastic Micropolar Model of Vertebral Trabecular Bone From Lattice Homogenization of the Bone Microstructure
,”
Biomech. Model. Mechanobiol.
,
13
(
1
), pp.
53
83
.
38.
Lakes
,
R.
, and
Drugan
,
W. J.
,
2015
, “
Bending of a Cosserat Elastic Bar of Square Cross Section: Theory and Experiment
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091002
.
39.
Eremeyev
,
V. A.
, and
Pietraszkiewicz
,
W.
,
2012
, “
Material Symmetry Group of the Non-Linear Polar-Elastic Continuum
,”
Int. J. Solids Struct.
,
49
(
14
), pp.
1993
2005
.
40.
Eremeyev
,
V. A.
, and
Pietraszkiewicz
,
W.
,
2016
, “
Material Symmetry Group and Constitutive Equations of Micropolar Anisotropic Elastic Solids
,”
Math. Mech. Solids
,
21
(
2
), pp.
210
221
.
41.
Kumar
,
R. S.
, and
McDowell
,
D. L.
,
2004
, “
Generalized Continuum Modeling of 2-D Periodic Cellular Solids
,”
Int. J. Solids Struct.
,
41
(
26
), pp.
7399
7422
.
42.
Eremeyev
,
V. A.
, and
Reccia
,
E.
,
2022
, “
On Dynamics of Elastic Networks With Rigid Junctions Within Nonlinear Micro-Polar Elasticity
,”
Int. J. Multiscale Comput. Eng.
,
20
(
6
), pp.
1
11
.
43.
Eremeyev
,
V. A.
,
2019
, “
Two- and Three-Dimensional Elastic Networks With Rigid Junctions: Modeling Within the Theory of Micropolar Shells and Solids
,”
Acta Mech.
,
230
(
11
), pp.
3875
3887
.
You do not currently have access to this content.