Abstract

Acoustic metamaterial plays a vital role in underwater engineering applications. Here we present a novel tunable underwater metamaterial for ultra-broadband hydroacoustic focusing. The material consists of a soft matrix embedded with cavities that are surrounded by solid shells. The proposed design enables on-demand tuning of the effective acoustic parameters of the composite material through two independent regulation strategies, namely, (i) filling the cavities with different liquids, and (ii) stretching the soft matrix. We develop a theoretical framework for calculating the effective parameters of the material and validate it through finite element simulations and experiments. Our theoretical analysis indicates that the proposed material is able to achieve a widely tunable refraction index while maintaining a high transmission coefficient. In addition, a hydroacoustic focusing functionality is demonstrated using the proposed metamaterials. These findings set the stage for the development of next-generation hydroacoustic materials for underwater communication and acoustic imaging technologies.

References

1.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Y. Y.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
2.
Krushynska
,
A.
,
Torrent
,
D.
,
Aragón
,
A. M.
,
Ardito
,
R.
,
Bilal
,
O. R.
,
Bonello
,
B.
,
Bosia
,
F.
, et al.,
2023
, “
Emerging Topics in Nanophononics and Elastic, Acoustic, and Mechanical Metamaterials: An Overview
,”
Nanophotonics
,
12
(
4
), pp.
659
686
.
3.
Zhang
,
Y.
,
Gao
,
X.
,
Zhang
,
S.
,
Cao
,
W.
,
Tang
,
L.
,
Wang
,
D.
, and
Li
,
Y.
,
2014
, “
A Biomimetic Projector With High Subwavelength Directivity Based on Dolphin Biosonar
,”
Appl. Phys. Lett.
,
105
(
12
), p.
123502
.
4.
Wang
,
Z.
,
Zhang
,
Q.
,
Zhang
,
K.
, and
Hu
,
G.
,
2016
, “
Tunable Digital Metamaterial for Broadband Vibration Isolation at Low Frequency
,”
Adv. Mater.
,
28
(
44
), pp.
9857
9861
.
5.
Liu
,
H.
,
Zhang
,
Q.
,
Zhang
,
K.
,
Hu
,
G.
, and
Duan
,
H.
,
2019
, “
Designing 3D Digital Metamaterial for Elastic Waves: From Elastic Wave Polarizer to Vibration Control
,”
Adv. Sci.
,
6
(
16
), p.
1900401
.
6.
Dong
,
E.
,
Zhang
,
Y.
,
Song
,
Z.
,
Zhang
,
T.
,
Cai
,
C.
, and
Fang
,
N. X.
,
2019
, “
Physical Modeling and Validation of Porpoises’ Directional Emission Via Hybrid Metamaterials
,”
Nat. Sci. Rev.
,
6
(
5
), pp.
921
928
.
7.
Ding
,
X.
,
Zhao
,
Y.
,
Yan
,
D.
, and
Zhang
,
K.
,
2019
, “
Controllable Propagation of Bending Waves in Wrinkled Films
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061005
.
8.
Karami Mohammadi
,
N.
,
Galich
,
P. I.
,
Krushynska
,
A. O.
, and
Rudykh
,
S.
,
2019
, “
Soft Magnetoactive Laminates: Large Deformations, Transverse Elastic Waves and Band Gaps Tunability by a Magnetic Field
,”
ASME J. Appl. Mech.
,
86
(
11
), p.
111001
.
9.
Lin
,
S.-C. S.
,
Huang
,
T. J.
,
Sun
,
J.-H.
, and
Wu
,
T.-T.
,
2009
, “
Gradient-Index Phononic Crystals
,”
Phys. Rev. B
,
79
(
9
), p.
094302
.
10.
Climente
,
A.
,
Torrent
,
D.
, and
Sanchez-Dehesa
,
J.
,
2010
, “
Sound Focusing by Gradient Index Sonic Lenses
,”
Appl. Phys. Lett.
,
97
(
10
), p.
104103
.
11.
Zigoneanu
,
L.
,
Popa
,
B.-I.
, and
Cummer
,
S. A.
,
2011
, “
Design and Measurements of a Broadband Two-Dimensional Acoustic Lens
,”
Phys. Rev. B
,
84
(
2
), p.
024305
.
12.
Li
,
Y.
,
Liang
,
B.
,
Tao
,
X.
,
Zhu
,
X.-F.
,
Zou
,
X.-Y.
, and
Cheng
,
J.-C.
,
2012
, “
Acoustic Focusing by Coiling Up Space
,”
Appl. Phys. Lett.
,
101
(
23
), p.
233508
.
13.
Zhao
,
J.
,
Bonello
,
B.
,
Marchal
,
R.
, and
Boyko
,
O.
,
2014
, “
Beam Path and Focusing of Flexural Lamb Waves Within Phononic Crystal-Based Acoustic Lenses
,”
New J. Phys.
,
16
(
6
), p.
063031
.
14.
Liang
,
Z.
, and
Li
,
J.
,
2012
, “
Extreme Acoustic Metamaterial by Coiling Up Space
,”
Phys. Rev. Lett.
,
108
(
11
), p.
114301
.
15.
Fleury
,
R.
, and
Alù
,
A.
,
2014
, “
Metamaterial Buffer for Broadband Non-Resonant Impedance Matching of Obliquely Incident Acoustic Waves
,”
J. Acoust. Soc. Am.
,
136
(
6
), pp.
2935
2940
.
16.
Fang
,
X.
,
Wen
,
J.
,
Bonello
,
B.
,
Yin
,
J.
, and
Yu
,
D.
,
2017
, “
Ultra-Low and Ultra-Broad-Band Nonlinear Acoustic Metamaterials
,”
Nat. Commun.
,
8
(
1
), p.
1288
.
17.
Gong
,
X.-T.
,
Zhou
,
H.-T.
,
Zhang
,
S.-C.
,
Wang
,
Y.-F.
, and
Wang
,
Y.-S.
,
2023
, “
Tunable Sound Transmission Through Water–Air Interface by Membrane-Sealed Bubble Metasurface
,”
Appl. Phys. Lett.
,
123
(
23
), p.
231703
.
18.
Zhang
,
S.-C.
,
2024
, “
Discrete Metasurface for Extreme Sound Transmission Through Water-Air Interface
,”
J. Sound Vib.
,
575
, p.
118269
.
19.
Liu
,
X.
,
Yu
,
C.
, and
Xin
,
F.
,
2021
, “
Gradually Perforated Porous Materials Backed With Helmholtz Resonant Cavity for Broadband Low-Frequency Sound Absorption
,”
Compos. Struct.
,
263
, p.
113647
.
20.
Zhang
,
L.
,
Zhang
,
W.
, and
Xin
,
F.
,
2022
, “
Sound Absorption of Two-Dimensional Rough Tube Porous Materials
,”
Phys. Fluids
,
34
(
8
), p.
083612
.
21.
Zhou
,
X.
, and
Xin
,
F.
,
2023
, “
Ultrathin Acoustic Metamaterial as Super Absorber for Broadband Low-Frequency Underwater Sound
,”
Sci. Rep.
,
13
, p.
7983
.
22.
Fu
,
Y.
,
Li
,
J.
,
Xie
,
Y.
,
Shen
,
C.
,
Xu
,
Y.
,
Chen
,
H.
, and
Cummer
,
S. A.
,
2018
, “
Compact Acoustic Retroreflector Based on a Mirrored Luneburg Lens
,”
Phys. Rev. Mater.
,
2
(
10
), p.
105202
.
23.
Zhang
,
N.-L.
,
Zhao
,
S.-D.
,
Dong
,
H.-W.
,
Wang
,
Y.-S.
, and
Zhang
,
C.
,
2022
, “
Reflection-Type Broadband Coding Metasurfaces for Acoustic Focusing and Splitting
,”
Appl. Phys. Lett.
,
120
(
14
), p.
142201
.
24.
Wang
,
D.
,
Zhang
,
Q.
, and
Hu
,
G.
,
2023
, “
Low Frequency Waterborne Sound Insulation Based on Sandwich Panels With Quasi-Zero-Stiffness Truss Core
,”
ASME J. Appl. Mech.
,
90
(
3
), p.
031006
.
25.
Dong
,
E.
,
Cao
,
P.
,
Zhang
,
J.
,
Zhang
,
S.
,
Fang
,
N. X.
, and
Zhang
,
Y.
,
2023
, “
Underwater Acoustic Metamaterials
,”
Sci. Rev.
,
10
.
26.
Zhang
,
S.
,
Xia
,
C.
, and
Fang
,
N.
,
2011
, “
Broadband Acoustic Cloak for Ultrasound Waves
,”
Phys. Rev. Lett.
,
106
(
2
), p.
024301
.
27.
Chen
,
Y.
,
Zheng
,
M.
,
Liu
,
X.
,
Bi
,
Y.
,
Sun
,
Z.
,
Xiang
,
P.
,
Yang
,
J.
, and
Hu
,
G.
,
2017
, “
Broadband Solid Cloak for Underwater Acoustics
,”
Phys. Rev. B
,
95
(
18
), p.
180104
.
28.
Bi
,
Y.
,
Jia
,
H.
,
Sun
,
Z.
,
Yang
,
Y.
,
Zhao
,
H.
, and
Yang
,
J.
,
2018
, “
Experimental Demonstration of Three-Dimensional Broadband Underwater Acoustic Carpet Cloak
,”
Appl. Phys. Lett.
,
112
, p.
223502
.
29.
Dong
,
J.
,
Zhao
,
Y.
,
Cheng
,
Y.
, and
Zhou
,
X.
,
2018
, “
Underwater Acoustic Manipulation Using Solid Metamaterials With Broadband Anisotropic Density
,”
ASME J. Appl. Mech.
,
85
(12), p.
121007
.
30.
Shen
,
Y.
,
Qiu
,
C.
,
Cai
,
X.
,
Ye
,
L.
,
Lu
,
J.
,
Ke
,
M.
, and
Liu
,
Z.
,
2019
, “
Valley-Projected Edge Modes Observed in Underwater Sonic Crystals
,”
Appl. Phys. Lett.
,
114
(
2
), p.
023501
.
31.
Wang
,
Y.-F.
,
Wang
,
Y.-Z.
,
Wu
,
B.
,
Chen
,
W.
, and
Wang
,
Y.-S.
,
2020
, “
Tunable and Active Phononic Crystals and Metamaterials
,”
ASME Appl. Mech. Rev.
,
72
(
4
), p.
040801
.
32.
Zhou
,
H.-T.
,
Jiang
,
M.
,
Zhu
,
J.-H.
,
Li
,
Y.
,
Li
,
Q.
,
Wang
,
Y.-F.
,
Qiu
,
C.-W.
, and
Wang
,
Y.-S.
,
2024
, “
Underwater Scattering Exceptional Point by Metasurface With Fluid-Solid Interaction
,”
Adv. Funct. Mater.
,
34
(
37
), p.
2404282
.
33.
Wen
,
Z.
,
Yuan
,
J.
,
Huang
,
Y.
, and
Zhou
,
X.
,
2024
, “
Underwater Acoustic Non-Reciprocal Manipulation Based on Dynamic-Modulation Structures
,”
ASME J. Appl. Mech.
,
91
, p.
094501
.
34.
Ruan
,
Y.
,
Liang
,
X.
,
Wang
,
Z.
,
Wang
,
T.
,
Deng
,
Y.
,
Qu
,
F.
, and
Zhang
,
J.
,
2019
, “
3-D Underwater Acoustic Wave Focusing by Periodic Structure
,”
Appl. Phys. Lett.
,
114
(
8
), p.
081908
.
35.
Martin
,
T. P.
,
Nicholas
,
M.
,
Orris
,
G. J.
,
Cai
,
L.-W.
,
Torrent
,
D.
, and
Sanchez-Dehesa
,
J.
,
2010
, “
Sonic Gradient Index Lens for Aqueous Applications
,”
Appl. Phys. Lett.
,
97
(
11
), p.
113503
.
36.
Jian
,
N.
,
Guo
,
R.
,
Zuo
,
L.
,
Sun
,
Y.
,
Xue
,
Y.
,
Liu
,
J.
, and
Zhang
,
K.
,
2023
, “
Bioinspired Self-Growing Hydrogels by Harnessing Interfacial Polymerization
,”
Adv. Mater.
,
35
(
12
), p.
2210609
.
37.
Zhang
,
K.
,
Ma
,
C.
,
He
,
Q.
,
Lin
,
S.
,
Chen
,
Y.
,
Zhang
,
Y.
,
Fang
,
N. X.
, and
Zhao
,
X.
,
2019
, “
Metagel With Broadband Tunable Acoustic Properties Over Air–Water–Solid Ranges
,”
Adv. Funct. Mater.
,
29
(
38
), p.
1903699
.
38.
Dong
,
E.
,
Song
,
Z.
,
Zhang
,
Y.
,
Ghaffari Mosanenzadeh
,
S.
,
He
,
Q.
,
Zhao
,
X.
, and
Fang
,
N. X.
,
2020
, “
Bioinspired Metagel With Broadband Tunable Impedance Matching
,”
Sci. Adv.
,
6
(
44
), p.
eabb3641
.
39.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2006
, “
Effective Parameters of Clusters of Cylinders Embedded in a Nonviscous Fluid Or Gas
,”
Phys. Rev. B
,
74
(
22
), p.
224305
.
40.
Fokin
,
V.
,
Ambati
,
M.
,
Sun
,
C.
, and
Zhang
,
X.
,
2007
, “
Method for Retrieving Effective Properties of Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. B
,
76
(
14
), p.
144302
.
You do not currently have access to this content.