Research Papers: Hydrodynamic Lubrication

Nonlinear Effects of Surface Texturing on the Performance of Journal Bearings in Flexible Rotordynamic Systems

[+] Author and Article Information
Jocelyn Rebufa

LTDS, Laboratoire de Tribologie et de
Dynamique des Systèmes,
Ecole Centrale de Lyon,
Ecully 69130, France;
CEA, Commissariat à l’énergie atomique
et aux énergies alternatives,
Bagnols sur Cèze 30200, France
e-mail: jrebufa@ec-lyon.fr

Fabrice Thouverez

LTDS, Laboratoire de Tribologie
et de Dynamique des Systèmes,
Ecole Centrale de Lyon,
Ecully 69130, France
e-mail: fabrice.thouverez@ec-lyon.fr

Erick Le Guyadec

CEA, Commissariat à l’énergie atomique
et aux énergies alternatives,
Bagnols sur Cèze 30200, France
e-mail: erick.leguyadec@cea.fr

Denis Mazuyer

LTDS, Laboratoire de Tribologie
et de Dynamique des Systèmes,
Ecole Centrale de Lyon,
Ecully 69130, France
e-mail: denis.mazuyer@ec-lyon.fr

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received April 14, 2016; final manuscript received August 25, 2016; published online May 26, 2017. Assoc. Editor: Joichi Sugimura.

J. Tribol 139(5), 051705 (May 26, 2017) (9 pages) Paper No: TRIB-16-1128; doi: 10.1115/1.4034765 History: Received April 14, 2016; Revised August 25, 2016

A dynamic model of a rotating shaft on two textured hydrodynamic journal bearings is presented. The hydrodynamic mean pressure is computed using multiscale periodic homogenization and is projected on a flexible shaft with internal damping. Harmonic balance method (HBM) is used to study the limit cycles of unbalance response of the coupled system discretized by finite element method (FEM). Stability is analyzed with Floquet multipliers computation. An example of an isotropic texturing pattern representing laser dimples on a lightweight rotor is analyzed. Vibration amplitude and stability zone are compared with plain bearing lubrication. It is shown in an example that full surface texturing leads to relatively higher vibration amplitude compared to plain bearings.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Lund, J. W. , 1974, “ Modal Response of a Flexible Rotor in Fluid-Film Bearings,” ASME J. Manuf. Sci. Eng., 96(2), pp. 525–533.
Myers, C. J. , 1984, “ Bifurcation Theory Applied to Oil Whirl in Plain Cylindrical Journal Bearings,” ASME J. Appl. Mech., 51(2), pp. 244–250. [CrossRef]
Vorst, E. L. B. V. D. , Fey, R. H. B. , Kraker, A. D. , and Campen, D. H. V. , 1996, “ Steady-State Behaviour of Flexible Rotordynamic Systems With Oil Journal Bearings,” Nonlinear Dyn., 11(3), pp. 295–313. [CrossRef]
Zheng, T. , and Hasebe, N. , 1999, “ Nonlinear Dynamic Behaviors of a Complex Rotor-Bearing System,” ASME J. Appl. Mech., 67(3), pp. 485–495. [CrossRef]
Muszynska, A. , 2005, Rotordynamics, CRC Press, Boca Raton, FL.
Elrod, H. G. , 1981, “ A Cavitation Algorithm,” ASME J. Tribol., 103(3), pp. 350–354.
Gropper, D. , Wang, L. , and Harvey, T. J. , 2016, “ Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings,” Tribol. Int., 94, pp. 509–529. [CrossRef]
Hamilton, D. B. , Walowit, J. A. , and Allen, C. M. , 1966, “ A Theory of Lubrication by Microirregularities,” ASME J. Basic Eng., 88(1), pp. 177–185. [CrossRef]
Patir, N. , and Cheng, H. S. , 1978, “ An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication,” ASME J. Tribol., 100(1), pp. 12–17.
Elrod, H. G. , 1979, “ A General Theory for Laminar Lubrication With Reynolds Roughness,” ASME J. Tribol., 101(1), pp. 8–14.
Bayada, G. , Martin, S. , and Vázquez, C. , 2005, “ An Average Flow Model of the Reynolds Roughness Including a Mass-Flow Preserving Cavitation Model,” ASME J. Tribol., 127(4), pp. 793–802. [CrossRef]
Almqvist, A. , Essel, E. K. , Persson, L. E. , and Wall, P. , 2007, “ Homogenization of the Unstationary Incompressible Reynolds Equation,” Tribol. Int., 40(9), pp. 1344–1350. [CrossRef]
Almqvist, A. , Fabricius, J. , and Wall, P. , 2012, “ Homogenization of a Reynolds Equation Describing Compressible Flow,” J. Math. Anal. Appl., 390(2), pp. 456–471. [CrossRef]
Arghir, M. , Roucou, N. , Helene, M. , and Frene, J. , 2003, “ Theoretical Analysis of the Incompressible Laminar Flow in a Macro-Roughness Cell,” ASME J. Tribol., 125(2), pp. 309–318. [CrossRef]
de Kraker, A. , van Ostayen, R. A. J. , and Rixen, D. J. , 2010, “ Development of a Texture Averaged Reynolds Equation,” Tribol. Int., 43(11), pp. 2100–2109. [CrossRef]
Tala-Ighil, N. , Fillon, M. , and Maspeyrot, P. , 2011, “ Effect of Textured Area on the Performances of a Hydrodynamic Journal Bearing,” Tribol. Int., 44(3), pp. 211–219. [CrossRef]
Brizmer, V. , and Kligerman, Y. , 2012, “ A Laser Surface Textured Journal Bearing,” ASME J. Tribol., 134(3), p. 031702. [CrossRef]
Ramesh, J. , and Majumdar, B. C. , 1995, “ Stability of Rough Journal Bearings Using Nonlinear Transient Method,” ASME J. Tribol., 117(4), pp. 691–695. [CrossRef]
Turaga, R. , Sekhar, A. S. , and Majumdar, B. C. , 2000, “ Non-Linear Transient Stability Analysis of a Rigid Rotor Supported on Hydrodynamic Journal Bearings With Rough Surfaces,” Tribol. Trans., 43(3), pp. 447–452. [CrossRef]
Lin, J.-R. , 2007, “ Application of the Hopf Bifurcation Theory to Limit Cycle Prediction of Short Journal Bearings With Isotropic Roughness Effects,” Proc. Inst. Mech. Eng., Part J, 221(8), pp. 869–879. [CrossRef]
Lin, J.-R. , 2012, “ The Surface Roughness Effects of Transverse Patterns on the Hopf Bifurcation Behaviors of Short Journal Bearings,” Ind. Lubr. Tribol., 64(5), pp. 265–270. [CrossRef]
Lin, J.-R. , 2014, “ The Influences of Longitudinal Surface Roughness on Sub-Critical and Super-Critical Limit Cycles of Short Journal Bearings,” Appl. Math. Modell., 38(1), pp. 392–402. [CrossRef]
Cameron, T. M. , and Griffin, J. H. , 1989, “ An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems,” ASME J. Appl. Mech., 56(1), pp. 149–154. [CrossRef]
Sarrouy, E. , and Thouverez, F. , 2010, “ Global Search of Non-Linear Systems Periodic Solutions: A Rotordynamics Application,” Mech. Syst. Signal Process., 24(6), pp. 1799–1813. [CrossRef]
Nayfeh, A. H. , 1995, Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods (Wiley Series in Nonlinear Science), Wiley, New York.
Giacopini, M. , Fowell, M. T. , Dini, D. , and Strozzi, A. , 2010, “ A Mass-Conserving Complementarity Formulation to Study Lubricant Films in the Presence of Cavitation,” ASME J. Tribol., 132(4), p. 041702. [CrossRef]
Woloszynski, T. , Podsiadlo, P. , and Stachowiak, G. W. , 2015, “ Efficient Solution to the Cavitation Problem in Hydrodynamic Lubrication,” Tribol. Lett., 58(1), pp. 1–11. [CrossRef]
Zorzi, E. S. , and Nelson, H. D. , 1977, “ Finite Element Simulation of Rotor-Bearing Systems With Internal Damping,” ASME J. Eng. Power, 99(1), pp. 71–76. [CrossRef]
Nacivet, S. , Pierre, C. , Thouverez, F. , and Jezequel, L. , 2003, “ A Dynamic Lagrangian Frequency–Time Method for the Vibration of Dry-Friction-Damped Systems,” J. Sound Vib., 265(1), pp. 201–219. [CrossRef]
Peletan, L. , Baguet, S. , Torkhani, M. , and Jacquet-Richardet, G. , 2013, “ A Comparison of Stability Computational Methods for Periodic Solution of Nonlinear Problems With Application to Rotordynamics,” Nonlinear Dyn., 72(3), pp. 671–682. [CrossRef]
Xie, L. , Baguet, S. , Prabel, B. , and Dufour, R. , 2016, “ Numerical Tracking of Limit Points for Direct Parametric Analysis in Nonlinear Rotordynamics,” ASME J. Vib. Acoust., 138(2), p. 021007. [CrossRef]
Zhou, B. , Thouverez, F. , and Lenoir, D. , 2014, “ Essentially Nonlinear Piezoelectric Shunt Circuits Applied to Mistuned Bladed Disks,” J. Sound Vib., 333(9), pp. 2520–2542. [CrossRef]


Grahic Jump Location
Fig. 1

Macroscopic domain and elementary cell

Grahic Jump Location
Fig. 2

Example of Gaussian periodic pattern

Grahic Jump Location
Fig. 3

Local resolution of the field χ3

Grahic Jump Location
Fig. 4

Local resolution of the field χ3

Grahic Jump Location
Fig. 5

Schematic diagram of the system

Grahic Jump Location
Fig. 6

Amplitude of the synchronous motion at the node 6 (Fig. 5) for an unbalance of 2 × 7 mg cm for textured bearing, plain bearings with radial clearances of Cr and γCr—the solid lines represent the stable points, and the dashed lines represent the unstable points

Grahic Jump Location
Fig. 7

Stability zone depending on the unbalance parameter against the shaft rotating speed

Grahic Jump Location
Fig. 8

Vibration amplitude of the shaft extremity (node 6) for the boundary stable system against the shaft rotating speed



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In