On the Laminar Flow Characteristics of Conical Bearings. Part I—Analytical Approach

[+] Author and Article Information
W. Kalita, Cz. M. Rodkiewicz, J. S. Kennedy

Department of Mechanical Engineering, The University of Alberta, Edmonton, Alberta, Canada

J. Tribol 108(1), 53-58 (Jan 01, 1986) (6 pages) doi:10.1115/1.3261143 History: Received August 22, 1984; Online October 29, 2009


An analysis has been made of the characteristics of externally pressurized central recess conical bearings with nonconstant film thickness under the assumption of isothermal laminar flow of a viscous incompressible fluid. The flow in the narrow gaps that may be convergent, constant, or divergent has been approximately determined on the basis of the lubrication theory with convective inertia neglected except for that part which is due to rotation. The pressure distribution along the gap, the load capacity, and the torque of the bearings, were theoretically predicted. It was found that, while the gap is very narrow, both the load capacity and the torque for the convergent case decrease moderately, and for the divergent case increase significantly with respect to the constant gap bearing, provided with flow rate, rotational velocity and the film thickness at the outlet of the gap are the same.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In