Thermal Evolution of Hot Spots in Thermally Nonlinear Carbon Graphite Sliders

[+] Author and Article Information
Young Gill Yune

Korea Advanced Energy Research Institute, Chungnam, Korea

M. D. Bryant

Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712-1063

J. Tribol 111(4), 591-596 (Oct 01, 1989) (6 pages) doi:10.1115/1.3261982 History: Received November 01, 1988; Online October 29, 2009


Frictional heating of a thermal mound (or hot spot) present on the interface between a carbon graphite block sliding against a fast moving conductor is simulated. Heating of this mound due to frictional power dissipation is modeled as a collection of internal heat sources uniformly distributed within a very shallow volume (or layer) located directly beneath the sliding contact interface. The thermal mound, assumed to be motionless on and originating from the carbon graphite block, possesses the extreme temperature dependent thermal conductivity and heat capacity common to carbon graphite materials. Evolution of thermal mound temperatures from cold to hot is studied as a function of the intensity of the internal heat source distribution and the thickness of the heat source layer. For a fast moving conducting body sliding against the graphite block, it is shown that (a) an optimal heat source layer thickness exists, whereby temperatures maximize for this thickness and (b) for a sufficiently high heat source intensity, thermal instability of the mound is possible.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In