Stratified Two-Phase Flow in Annular Seals

[+] Author and Article Information
P. A. Beatty

University of Vermont, Burlington, VT 05405

W. F. Hughes

Carnegie-Mellon University, Pittsburgh, PA 15213

J. Tribol 112(2), 372-381 (Apr 01, 1990) (10 pages) doi:10.1115/1.2920267 History: Received February 10, 1989; Revised June 19, 1989; Online June 05, 2008


A new mathematical theory for the analysis of leakage rate behavior of annular shaft seals operating in the two-phase regime is presented which is based on the stratified flow of the boiling liquid and vapor phases. The flow is presumed to be axisymmetric, steady, and so rapid as to be turbulent. A set of governing equations for film-averaged liquid and vapor properties is developed. The streams are assumed to be adiabatic and moving at different average velocities. Effects of heat generation due to viscous dissipation and of interfacial mass transfer are accounted for fully. The methods of calculation for leakage under choked and unchoked conditions are explained. Many numerical results of leakage rate calculations for cryogenic oxygen are presented and are compared to corresponding results from a homogeneous-equilibrium flow model. Parametric studies show that leakage is fairly insensitive to the arrangement of the liquid and vapor phases within the seal.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In