An Expression of Reynolds Stresses in Turbulent Lubrication Theory

[+] Author and Article Information
A. K. Tieu, P. B. Kosasih

Department of Mechanical Engineering, The University of Wollongong, Wollongong 2500, Australia

J. Tribol 114(1), 57-60 (Jan 01, 1992) (4 pages) doi:10.1115/1.2920868 History: Received May 28, 1990; Revised May 29, 1991; Online June 05, 2008


This paper proposes an alternative model of Reynolds stresses for turbulent lubrication theory. The approach relies on Prandtl’s mixing length theory which is based on a modified Van Driest mixing formula [1]. However, unlike the previous theories [2, 3] the proposed equation is capable of accounting for the effect of shear stress gradient on the mixing length. Thus it is well suited to turbulent flow analysis in bearings where the presence of shear stress gradient due to the effect of pressure gradient should be considered. A series of velocity measurements in thin channels in the low Reynolds number turbulent flow range are analysed using the theory. The data analysis shows a strong effect of shear stress gradient on the viscous sublayer in the low Reynolds number regime. As a result, a new model of mixing length applicable to the turbulent lubrication analysis in thin film at low or high Reynolds numbers or under low or high shear stress gradient is presented.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In