Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capability

[+] Author and Article Information
H. Heshmat

Mechanical Technology Incorporated, 968 Albany-Shaker Rd., Latham, NY 12110

J. Tribol 116(2), 287-294 (Apr 01, 1994) (8 pages) doi:10.1115/1.2927211 History: Received February 11, 1993; Revised June 28, 1993; Online June 05, 2008


An advanced-design, aerodynamic, air-lubricated foil journal bearing achieved a landmark speed of 2200 cps (132,000 rpm) and a major breakthrough in load performance of 673.5 kPa (97.7 psi). At 20°C (68°F) room temperature, normal ambient pressure, 995 cps (59,700 rpm) rotor speed, and with bearing projected pad area of 1081 mm2 (1.675 in2 ), the bearing demonstrated a load capacity of 727.8 N (163.6 lb). The bearing also exhibited low heat generation, with about 40°C (104°F) average side leakage temperature rise. For this demonstration, a highspeed spindle utilizing a pair of 35-mm (1.375-in.) bearings and supporting a test rotor with a mass of 1.545 kg (weighing 3.41 lb) and overall length of 211 mm (8.3 in.) was successfully taken to the limiting speed of the test apparatus. This speed was set by the maximum sound velocity (Mach 1) in the spindle’s turbine wheel. The rotor/bearing speed of 4.62 × 106 DN is beyond the capability of any advanced oil-lubricated ball bearings or conventional gas-lubricated bearings. The net result is a highly stable bearing at high operating speed. This paper presents the development of this air-lubricated foil journal bearing, the operational procedures used during testing, test results (dynamic analyses), and load performance characteristics.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In