Experimental Evaluation of Sector-Shaped Hydrodynamic Thrust Bearings Under Translation and Transverse Vibration

[+] Author and Article Information
Y. K. Wang, C. D. Mote

Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720

J. Tribol 116(3), 521-527 (Jul 01, 1994) (7 pages) doi:10.1115/1.2928875 History: Received February 28, 1992; Revised December 21, 1993; Online June 05, 2008


The bearing load of a plane inclined sector-shaped hydrodynamic thrust bearing, under simultaneous translation and transverse vibration, is measured experimentally. The results are used to evaluate the lubrication theory solutions. Consequently, both the influences of the unsteady film inertia, measured by the squeeze Reynolds number Res , and the convective film inertia, measured by the modified Reynolds number Re*, on load amplitude and phase are investigated. It is found that the inertia-neglected lubrication solutions underestimate: (1) the oscillatory component of the bearing load by 6.5 percent at Res = 1.0 and by 1.4 percent at Re* = 1.0, and (2) the mean component of the bearing load by 0.7 percent at Res = 1.0 and by 2.0 percent at Re* = 1.0 Moreover, the fluid inertia induces an equivalent negative spring force component which shifts the phase of the bearing load by 9.5 deg at Res =1.0 and by 4 deg at Re* = 1.0 as compared to the lubrication theory predictions. Hence it can be an important consideration when designing bearings for vibration control purposes.

Copyright Ā© 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In