Comparison of the Low-Speed Frictional Characteristics of Silicon Nitride and Steel Balls Using Conventional Lubricants

[+] Author and Article Information
M. R. Lovell, M. M. Khonsari, R. D. Marangoni

Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA 15261

J. Tribol 118(1), 43-51 (Jan 01, 1996) (9 pages) doi:10.1115/1.2837091 History: Received February 21, 1994; Revised November 29, 1994; Online January 24, 2008


The friction behavior of Si3 N4 ceramic balls operating under ultra-low-speeds with velocity reversal is investigated. Twenty-one sets of exclusively ultra-low-speed operating conditions were examined that include rotational speeds in the range of .01–1 deg/s, normal loads varying from 81.6 to 185.4 N per ball, and two conventional lubricants: DTE 24 and SAE 20 oil. General trends for the friction torque behavior of ceramic balls were established. Theoretical expressions and empirical correlations are presented for evaluation of the steady torque, Ts , and the rest slope, σ. These relationships can be used in Dahl’s model to completely characterize the hysteresis friction behavior of ceramic balls. The results of the ceramic ball friction measurements were compared to that of steel balls operating under identical conditions. In addition, a series of experiments was conducted to extend the operating speeds from .01–500 deg/s. Under the conditions tested, the lubrication regimes from boundary to fluid-film were identified.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In