Angled Injection—Hydrostatic Bearings Analysis and Comparison to Test Results

[+] Author and Article Information
Luis San Andres, Dara Childs

Mechanical Engineering Department, Texas A&M University, College Station, TX 77843

J. Tribol 119(1), 179-187 (Jan 01, 1997) (9 pages) doi:10.1115/1.2832455 History: Received January 05, 1996; Revised May 20, 1996; Online January 24, 2008


Hydrostatic/hydrodynamic (hybrid) journal bearings handling process liquids have limited dynamic stability characteristics and their application as support elements to high speed flexible rotating systems is severely restricted. Measurements on water hybrid bearings with angled orifice injection have demonstrated improved rotordynamic performance with virtual elimination of cross-coupled stiffness coefficients and null or negative whirl frequency ratios. A bulk-flow model for prediction of the static performance and force coefficients of hybrid bearings with angled orifice injection is advanced. The analysis reveals that the fluid momentum exchange at the orifice discharge produces a pressure rise in the hydrostatic recess which retards the shear flow induced by journal rotation, and thus, reduces cross-coupling forces. The predictions from the model are compared with experimental measurements for a 45 deg angled orifice injection, 5 recess, water hydrostatic bearing operating at 10.2, 17.4, and 24.6 krpm and with supply pressures of 4, 5.5 and 7 MPa. The correlations include recess pressures, flow rates, and rotordynamic force coefficients at the journal centered position. An application example for a liquid oxygen hybrid bearing also demonstrates the advantages of tangential orifice injection on the rotordynamic coefficients and stability indicator for forward whirl motions, and without performance degradation on direct stiffness and damping coefficients.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In