Contact Stresses Between an Elastic Cylinder and a Layered Elastic Solid

[+] Author and Article Information
P. K. Gupta, J. A. Walowit

Mechanical Technology Inc., Latham, N. Y.

J. of Lubrication Tech 96(2), 250-257 (Apr 01, 1974) (8 pages) doi:10.1115/1.3451940 History: Received March 02, 1973; Online October 18, 2010


The generalized plane strain problem of the contact of layered elastic solids is reduced to an integral equation using Green’s function approach. Approximate numerical solutions are obtained by replacing the integral equation by a matrix inversion when the trapezoidal rule is used to represent the integral. Results for determining the actual contact pressure at the center of the contact zone and size of contact zone for a wide range of layer thicknesses are presented for two most practical cases, (i) when the indenter is rigid, and (ii) when the indenter is elastic having a modulus of elasticity equal to that of the substrate of the indented body. When the layer is softer than the substrate it is found that the actual contact pressure distribution is very closely determined by a weighted sum of elliptic and parabolic functions. For a substrate softer than the layer the pressures substantially deviate from an elliptical or parabolic behavior, for the cases when the layer thickness is finite. The analysis checks with the Hertzian solution in the extreme cases when the layer thickness either tends to zero or approaches infinity.

Copyright © 1974 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In