Nondimensional Presentation of Frictional Tractions in Elastohydrodynamic Lubrication—Part II: Starved Conditions

[+] Author and Article Information
J. F. Archard, K. P. Baglin

Dept. of Engineering, The University of Leicester, Leicester, England

J. of Lubrication Tech 97(3), 412-421 (Jul 01, 1975) (10 pages) doi:10.1115/1.3452619 History: Received June 25, 1974; Online October 18, 2010


Part I of this paper presented a broad semi-analytic treatment of frictional tractions in nondimensional terms; this was confined to the fully flooded situation and the present paper extends the analysis to include starved conditions. As in Part I three major conditions are considered in detail: classical (isoviscous, undeformed) low elastic modulus (isoviscous, heavily deformed) and high elastic modulus (pressure dependent viscosity, heavily deformed). The influence of starvation is presented as a series of correction curves for the rolling and sliding friction derived for fully flooded conditions. Starvation influences friction both through the extent to which the gap between the surfaces is filled by lubricant and through its influence upon the film thickness. Both factors affect rolling friction which is therefore markedly reduced by starvation so mild that there is negligible influence upon the film thickness. In contrast, sliding friction (arising either in the main pressure zone or the cavitated region) is most strongly influenced by the film thickness and is therefore markedly affected only by relatively severe starvation.

Copyright © 1975 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In