Effect of Surface Roughness on Elastohydrodynamic Line Contact

[+] Author and Article Information
B. C. Majumdar, B. J. Hamrock

National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135

J. of Lubrication Tech 104(3), 401-407 (Jul 01, 1982) (7 pages) doi:10.1115/1.3253232 History: Received February 20, 1981; Online November 13, 2009


A numerical solution of an elastohydrodynamic lubrication (EHL) contact between two long, rough surface cylinders is obtained. A theoretical solution of pressure distribution, elastohydrodynamic load, and film thickness for given speeds and for lubricants with pressure-dependent viscosity, material properties of cylinders, and surface roughness parameters is made by simultaneous solution of an elasticity equation and the Reynolds equation for two partially lubricated rough surfaces. The pressure due to asperity contact is calculated by assuming a Gaussian distribution of surface irregularities. The elastic deformation is found from hydrodynamic and contact pressures by using plane strain analysis. The effect of surface roughness on EHL loads, speeds, and central film thicknesses is studied. The results indicate that for a constant central film thickness (1) increasing the surface roughness decreases the EHL load and (2) there is little variation in minimum film thickness as the surface roughness is increased.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In