Unbalance Behavior of Squeeze Film Damped Multi-Mass Flexible Rotor Bearing Systems

[+] Author and Article Information
L. J. McLean, E. J. Hahn

University of New South Wales, Kensington, NSW, Australia

J. of Lubrication Tech 105(1), 22-28 (Jan 01, 1983) (7 pages) doi:10.1115/1.3254538 History: Received March 26, 1982; Online November 13, 2009


A solution technique is developed whereby the problem of determining the synchronous unbalance response of general multi-degree of freedom rotor bearing systems is reduced to solving a set of as many simultaneous nonlinear equations in damper orbit eccentricities are there are dampers. It is shown how, in the case of a single damper, the resulting nonlinear equation may be solved directly to determine all possible orbit eccentricity solutions as a function of the rotor speed and bearing parameter, thereby ensuring completeness of solution, eliminating convergence problems and clearly indicating all multistable operation possibilities. Design maps portraying the effect of the relevant damper design parameters on system response may be conveniently obtained, allowing for optimal damper design. The technique is illustrated for the case of a simple squeeze film damped symmetric flexible rotor.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In