Dynamic Analysis of Turbulent Annular Seals Based On Hirs’ Lubrication Equation

[+] Author and Article Information
D. W. Childs

Mechanical Engineering Department, Texas A&M University, College Station, Texas 77843

J. of Lubrication Tech 105(3), 429-436 (Jul 01, 1983) (8 pages) doi:10.1115/1.3254633 History: Received May 01, 1981; Online November 13, 2009


Expressions are derived which define dynamic coefficients for high-pressure annular seals typical of neck-ring and interstage seals employed in multistage centrifugal pumps. Completely developed turbulent flow is assumed in both the circumferential and axial directions, and is modeled in this analysis by Hirs’ turbulent lubrication equations. Linear zeroth and first-order “short-bearing” perturbation solutions are developed by an expansion in the eccentricity ratio. The influence of inlet swirl is accounted for in the development of the circumferential flow field. Comparisons are made between the stiffness, damping, and inertia coefficients derived herein based on Hirs’ model and previously published results based on other models. Finally, numerical results are presented for interstage seals in the Space Shuttle Main Engine High Pressure Fuel Turbopump and a water pump.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In