A Numerical Solution of a Surface Crack Under Cyclic Hydraulic Pressure Loading

[+] Author and Article Information
Z.-Q. Xu, K. J. Hsia

Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, Urbana, IL 61801

J. Tribol 119(4), 637-645 (Oct 01, 1997) (9 pages) doi:10.1115/1.2833863 History: Received March 06, 1996; Revised June 26, 1996; Online January 24, 2008


Material degradation and failure in rolling contact components are often associated with surface crack initiation and propagation under repeated contact loading. In the presence of lubricating fluid, the hydraulic pressure in the fluid film between the contacting surfaces may play an important role in the crack growth process. This paper presents a method to model the effect of hydraulic pressure loading on surface crack growth. The governing equations of the coupled viscous fluid/cracked solid problem are obtained, which are nonlinear integral and differential equations. The fluid is assumed to be Newtonian and incompressible. The cracked solid is considered to be linearly elastic. Pressure loading history is prescribed at the crack mouth. Finite difference methods are used to solve the governing equations. For each time step, Newton-Raphson iteration method is used to search for the root of the nonlinear equations. Both transient and steady-state pressure distributions under cyclic pressure loading are obtained using this method. A few numerical examples are given to demonstrate the reliability and effectiveness of the solution method. The solution shows that there exists a characteristic time, which determines whether pressure fluctuations at the crack mouth can be transmitted deep into the crack. The steady-state pressure distribution exhibits a phase delay from the applied cyclic loading.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In