Analyses of Heat-Pipe Cooled Isothermal Journal Bearings

[+] Author and Article Information
Qian Wang, Gang Chen, Yiding Cao

Department of Mechanical Engineering, Florida International University, Miami, FL 33199

J. Tribol 121(3), 546-552 (Jul 01, 1999) (7 pages) doi:10.1115/1.2834102 History: Received February 02, 1998; Revised June 30, 1998; Online January 24, 2008


An isothermal journal bearing that incorporates heat-pipe cooling technology has been developed. The heat pipe can spread frictional heat rapidly along the bearing circumference, resulting in a uniform temperature distribution in the bearing with a low peak temperature and stable transient thermal performance. A numerical model has been developed for the new bearing to facilitate a thorough understanding of its performance as well as an optimal bearing design. The heat pipe in the bearing is modeled as a heat conductor whose effective thermal conductance is determined through the correlation between the numerical results and experimental data. The heat transfer coefficients at bearing boundaries are obtained with the assistance of experimental measurements and calculations using semi-empirical correlations. Good agreement is observed between the analytical and experimental results. Once the analytical model is validated, a parametric study is conducted for the performance of new bearings with different configurations and materials. The analytical results further confirm that the isothermal journal bearing developed has the ability to battle frictional-heat-induced problems, which can significantly benefit both bearing operation and failure prevention.

Copyright © 1999 by Journal of Tribology
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In