Comparison of FFT-MLMI for Elastic Deformation Calculations

[+] Author and Article Information
F. Colin

Laboratoire de Mécanique des Contacts, UMR CNRS 5514, INSA de Lyon, FranceUniversité Claude Bernard Lyon 1, France

A. A. Lubrecht

Laboratoire de Mécanique des Contacts, UMR CNRS 5514, INSA de Lyon, France

J. Tribol 123(4), 884-887 (Jun 29, 2000) (4 pages) doi:10.1115/1.1340631 History: Received March 23, 2000; Revised June 29, 2000

First Page Preview

View Large
First page PDF preview
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Bell Labs Innovations: http://cm.bell-labs.com/netlib/fftpack.
Cooley,  J. M., and Tukey,  J. W., 1965, “An Algorithm for the Machine Calculation of Complex Fourier Series,” Math. Comput., 19, pp. 297–301.
Ju,  Y., and Farris,  T. N., 1996, “Spectral Analysis of Two Dimensional Contact Problems,” ASME J. Tribol., 118, pp. 320–328.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, United Kingdom.
Leroy,  J. M., Floquet,  A., and Villechaise,  B., 1989, “Thermomechanical Behaviour of Multilayered Media: Theory,” ASME J. Tribol., 111, No. 3, pp. 538–544.
Ling, F. F., 1973, Surface Mechanics, ISBN 0-471-53905-8, Wiley, New York.
Brandt,  A., and Lubrecht,  A. A., 1990, “Multilevel Matrix Multiplication and Fast Solution of Integral Equations,” J. Comput. Phys., 90, No. 2, pp. 348–370.
Lubrecht,  A. A., and Ioannides,  E., 1996, “A Fast Solution of the Dry Contact Problem and the Associated Sub-surface Stress Field, Using Multilevel Techniques,” ASME J. Tribol., 113, pp. 128–132.
Newland, D. E., 1993, An Introduction to Random Vibrations, Spectral and Wavelet Analysis, ISBN 0-582-21584-6, Addison-Wesley, Reading, MA.
Polonsky,  I. A., and Keer,  L. M., 2000, “A Fast and Accurate Method for Numerical Analysis of Elastic Layered Contacts,” ASME J. Tribol., 122, pp. 30–35.
Polonsky,  I. A., and Keer,  L. M., 2000, “Fast Methods for Solving Rough Contact Problems: A Comparative Study,” ASME J. Tribol., 122, pp. 36–41.
Press, W. H., et al., 1992, Numerical Recipes in C, The Art of Scientific Computing, 2nd ed., ISBN 0-521-43108-5. Cambridge University Press, Cambridge, United Kingdom.
Stanley,  H. M., and Kato,  T., 1997, “An FFT-Based method for Rough Surface Contact,” ASME J. Tribol., 119, pp. 481–485.
Venner, C. H., “Multilevel Solution of the EHL Line and Point Contact Problems,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
Venner, C. H., and Lubrecht, A. A., 2000, MultiLevel Methods in Lubrication, ISBN 0-444-50503-2, Elsevier, New York.
Westergaard,  H. M., 1939, “Bearing Pressures and Cracks,” ASME J. Appl. Mech., 6, pp. A49–A53.


Grahic Jump Location
Calculation domain; spoiling effect at the domain extremities
Grahic Jump Location
One-dimensional problem
Grahic Jump Location
Two-dimensional problem



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In